forked from jtenbarg/pgkylFrontEnd
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathXPointFinder.py
137 lines (106 loc) · 5.76 KB
/
XPointFinder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import numpy as np
from utils import gkData
from utils import auxFuncs
import matplotlib.pyplot as plt
from utils import plotParams
params = {} #Initialize dictionary to store plotting and other parameters
#End preamble####################################
#Tested to handle g0 and g2: VM, 5M, 10M
#Requires a _params.txt file in your data directory of the form gkeyllOutputBasename_params.txt! See example_params.txt for formatting
paramFile = '/Users/jtenbarg/Desktop/Runs/ColbyTurbulence/PKPM_New/Data/pkpm_2d_turb_p2-params.txt'
fileNum = 106 #Frame number
interpFac = 1 #Apply FFT interpolation (for interpFac > 1) of order interpFac.
useB = 0 #Use Bx and By rather than the vector potential. Seems to not work as well
constructJz = 1 #Construct Jz from psi. Less accurate but only requires fields files
saveFig = 0 #Save figure
varid = 'psi' #See table of choices in README
tmp = gkData.gkData(paramFile,fileNum,varid,params) #Initialize constants for normalization
#below limits [z0, z1, z2,...] normalized to params["axesNorm"]
params["lowerLimits"] = [-1e6, -1e6, -0.e6, -1.e6, -1e6]
params["upperLimits"] = [1e6, 1e6, 0.e6, 1.e6, 1.e6]
params["restFrame"] = 1 #Convert pressures to fluid restframe, Pij - n ui uj
params["polyOrderOverride"] = 0 #Override default dg interpolation and interpolate to given number of points
#Define species to normalize and lengths/times
refSpeciesAxes = 'ion'; refSpeciesAxes2 = 'ion'
refSpeciesTime = 'ion';
speciesIndexAxes = tmp.speciesFileIndex.index(refSpeciesAxes); speciesIndexAxes2 = tmp.speciesFileIndex.index(refSpeciesAxes2)
speciesIndexTime = tmp.speciesFileIndex.index(refSpeciesTime)
params["axesNorm"] = [tmp.d[speciesIndexAxes], tmp.d[speciesIndexAxes], tmp.vt[speciesIndexAxes2], tmp.vt[speciesIndexAxes2], tmp.vt[speciesIndexAxes2]]
params["timeNorm"] = tmp.omegaC[speciesIndexTime]
params["axesLabels"] = ['$x/d_i$', '$y/d_i$', '$z/d_p$']
params["plotContours"] = 1 #Overplot contours of the following
params["colorContours"] = 'k' #Color of contours
params["numContours"] = 50 #Number of contours
params["axisEqual"] = 1 #Makes axes equal for 2D
params["symBar"] = 1 #Force colorbar to be symmetric about 0
params["colormap"] = 'bwr'#Colormap for 2D plots: inferno*, bwr (red-blue), any matplotlib colormap
#End input########################################################
var = gkData.gkData(paramFile,fileNum,'psi',params).compactRead()
#Construct jz = -grad^2 psi / mu_0. This minimizes data files that need to be shared to just the fields.
if constructJz:
[df_dx,df_dy,df_dz] = auxFuncs.genGradient(var.data,var.dx)
[d2f_dxdx,d2f_dxdy,d2f_dxdz] = auxFuncs.genGradient(df_dx,var.dx)
[d2f_dydx,d2f_dydy,d2f_dydz] = auxFuncs.genGradient(df_dy,var.dx)
jz = -(d2f_dxdx + d2f_dydy) / var.mu0
else:
jz = getattr(gkData.gkData(paramFile,fileNum,'jz',params).compactRead(),'data')
coords0 = var.coords;
if useB:
bx = getattr(gkData.gkData(paramFile,fileNum,'bx',params).compactRead(),'data')
by = getattr(gkData.gkData(paramFile,fileNum,'by',params).compactRead(),'data')
if interpFac > 1:
[psi, coords] = auxFuncs.getFFTInterp(var.data, coords0, fac=interpFac)
[jz, coords] = auxFuncs.getFFTInterp(jz, coords0, fac=interpFac)
if useB:
[bx, coords] = auxFuncs.getFFTInterp(bx, coords0, fac=interpFac)
[by, coords] = auxFuncs.getFFTInterp(by, coords0, fac=interpFac)
else:
psi = var.data; coords = coords0
x = coords[0]; y = coords[1];
dx = [coords[d][1] - coords[d][0] for d in range(2)]
if useB:
f = bx; g = by
else:
f = psi; g = None
#Indicies of critical points, X points, and O points (max and min)
critPoints = auxFuncs.getCritPoints(f, g=g, dx=dx)
[xpts, optsMax, optsMin] = auxFuncs.getXOPoints(f, critPoints, g=g, dx=dx)
numC = np.shape(critPoints)[1]
numX = np.shape(xpts)[0]; numOMax = np.shape(optsMax)[0]; numOMin = np.shape(optsMin)[0];
#Create array of 0s with 1s only at X points
binaryMap = np.zeros(np.shape(f)); binaryMap[xpts[:,0],xpts[:,1]] = 1
plt.figure(figsize=(12,8))
plt.pcolormesh(x/params["axesNorm"][0], y/params["axesNorm"][1], np.transpose(jz), shading="gouraud")
plt.plot(x[xpts[:,0]]/params["axesNorm"][0],y[xpts[:,1]]/params["axesNorm"][1],'xk')
plt.plot(x[optsMin[:,0]]/params["axesNorm"][0],y[optsMin[:,1]]/params["axesNorm"][1],'oc')
plt.plot(x[optsMax[:,0]]/params["axesNorm"][0],y[optsMax[:,1]]/params["axesNorm"][1],'om')
plt.xlabel(params["axesLabels"][0]); plt.ylabel(params["axesLabels"][1])
plt.colorbar(); plt.set_cmap(params["colormap"])
if params["symBar"]:
maxLim = np.max(np.abs(jz))
plt.clim(-maxLim, maxLim)
if params["plotContours"]:
plt.rcParams['contour.negative_linestyle'] = 'solid'
plt.contour(x/params["axesNorm"][0], y/params["axesNorm"][1], np.transpose(psi),\
params["numContours"], colors = params["colorContours"], linewidths=0.75)
if params["axisEqual"]:
plt.gca().set_aspect('equal', 'box')
plt.title('Critical pts = {}, Xpts = {}, OptsMax = {}, OptsMin = {}'.format(numC, numX, numOMax, numOMin) )
if saveFig:
saveFilename = tmp.filenameBase + 'xPts' + '_interpFac_' + str(interpFac) + '_' + format(fileNum, '04') + '.png'
plt.savefig(saveFilename, dpi=300)
print('Figure written to ',saveFilename)
plt.show()
#Plot binaryMap
if False:
plt.figure(figsize=(12,8))
plt.pcolormesh(x/params["axesNorm"][0], y/params["axesNorm"][1], np.transpose(binaryMap), shading="gouraud")
plt.plot(x[xpts[:,0]]/params["axesNorm"][0],y[xpts[:,1]]/params["axesNorm"][1],'xk')
plt.xlabel(params["axesLabels"][0]); plt.ylabel(params["axesLabels"][1])
plt.colorbar(); plt.set_cmap('binary')
plt.gca().set_aspect('equal', 'box')
if params["plotContours"]:
plt.rcParams['contour.negative_linestyle'] = 'solid'
plt.contour(x/params["axesNorm"][0], y/params["axesNorm"][1], np.transpose(psi),\
params["numContours"], colors = params["colorContours"], linewidths=0.75)
plt.show()