|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [ |
| 8 | + { |
| 9 | + "data": { |
| 10 | + "text/plain": [ |
| 11 | + "'/work/05258/bcummins/GIT/flow_cytometry_scoring/notebooks'" |
| 12 | + ] |
| 13 | + }, |
| 14 | + "execution_count": 1, |
| 15 | + "metadata": {}, |
| 16 | + "output_type": "execute_result" |
| 17 | + } |
| 18 | + ], |
| 19 | + "source": [ |
| 20 | + "%pwd" |
| 21 | + ] |
| 22 | + }, |
| 23 | + { |
| 24 | + "cell_type": "code", |
| 25 | + "execution_count": 2, |
| 26 | + "metadata": {}, |
| 27 | + "outputs": [ |
| 28 | + { |
| 29 | + "name": "stdout", |
| 30 | + "output_type": "stream", |
| 31 | + "text": [ |
| 32 | + "/opt/conda/lib/python3.6/distutils/dist.py:261: UserWarning: Unknown distribution option: 'install_requires'\n", |
| 33 | + " warnings.warn(msg)\n", |
| 34 | + "running install\n", |
| 35 | + "running build\n", |
| 36 | + "running build_py\n", |
| 37 | + "running install_lib\n", |
| 38 | + "running install_egg_info\n", |
| 39 | + "Removing /work/05258/bcummins/jupyter_packages/lib/python3.6/site-packages/flow_cytometry_scoring-0.0.1-py3.6.egg-info\n", |
| 40 | + "Writing /work/05258/bcummins/jupyter_packages/lib/python3.6/site-packages/flow_cytometry_scoring-0.0.1-py3.6.egg-info\n" |
| 41 | + ] |
| 42 | + } |
| 43 | + ], |
| 44 | + "source": [ |
| 45 | + "import pandas as pd\n", |
| 46 | + "import os\n", |
| 47 | + "import json\n", |
| 48 | + "import sys\n", |
| 49 | + "from os.path import expanduser\n", |
| 50 | + "import numpy as np\n", |
| 51 | + "import matplotlib.pyplot as plt\n", |
| 52 | + "\n", |
| 53 | + "\n", |
| 54 | + "## Assumes we are inside flow_cytometry_scoring/notebooks\n", |
| 55 | + "os.chdir(\"../\")\n", |
| 56 | + "# !{sys.executable} setup.py develop --user --uninstall\n", |
| 57 | + "!{sys.executable} setup.py install --user \n", |
| 58 | + "# %pip uninstall -y flow_cytometry_scoring &> /dev/null || True\n", |
| 59 | + "# %pip install . --user\n", |
| 60 | + "os.chdir(\"notebooks/\")\n" |
| 61 | + ] |
| 62 | + }, |
| 63 | + { |
| 64 | + "cell_type": "code", |
| 65 | + "execution_count": 3, |
| 66 | + "metadata": {}, |
| 67 | + "outputs": [ |
| 68 | + { |
| 69 | + "data": { |
| 70 | + "text/plain": [ |
| 71 | + "['/work/projects/SD2E-Community/prod/projects/sd2e-project-43/test/dc_YeastSTATES-CRISPR-Short-Duration-Time-Series-20191208_20200423194115',\n", |
| 72 | + " '/work/projects/SD2E-Community/prod/projects/sd2e-project-43/test/dc_YeastSTATES-CRISPR-Short-Duration-Time-Series-35C_20200423195648']" |
| 73 | + ] |
| 74 | + }, |
| 75 | + "execution_count": 3, |
| 76 | + "metadata": {}, |
| 77 | + "output_type": "execute_result" |
| 78 | + } |
| 79 | + ], |
| 80 | + "source": [ |
| 81 | + "from flow_cytometry_scoring import rank_order_truth_tables as rank\n", |
| 82 | + "\n", |
| 83 | + "%load_ext autoreload\n", |
| 84 | + "%reload_ext autoreload\n", |
| 85 | + "%autoreload 2\n", |
| 86 | + " \n", |
| 87 | + "\n", |
| 88 | + "\n", |
| 89 | + "DATA_CONVERGE_PROJECT=\"sd2e-project-43\"\n", |
| 90 | + "\n", |
| 91 | + "data_converge_base = os.path.join(expanduser(\"~\"), 'sd2e-projects', DATA_CONVERGE_PROJECT)\n", |
| 92 | + "experiment_dir = os.path.realpath(os.path.join(data_converge_base, 'test'))\n", |
| 93 | + "experiment_dir_contents = [os.path.realpath(os.path.join(experiment_dir, x)) for x in os.listdir(experiment_dir)]\n", |
| 94 | + "\n", |
| 95 | + "experiments = [x for x in experiment_dir_contents \n", |
| 96 | + " if os.path.isdir(x) and \"CRISPR-Short-Duration\" in x]\n", |
| 97 | + "\n", |
| 98 | + "experiments = {x.split('_')[1]:x for x in sorted(experiments)}\n", |
| 99 | + "experiments = list(experiments.values())\n", |
| 100 | + "\n", |
| 101 | + "experiments\n" |
| 102 | + ] |
| 103 | + }, |
| 104 | + { |
| 105 | + "cell_type": "code", |
| 106 | + "execution_count": 4, |
| 107 | + "metadata": {}, |
| 108 | + "outputs": [], |
| 109 | + "source": [ |
| 110 | + "## Data Helper functions\n", |
| 111 | + "\n", |
| 112 | + "def get_record(experiment):\n", |
| 113 | + " record = json.load(open(os.path.join(experiment, \"record.json\")))\n", |
| 114 | + " return record\n", |
| 115 | + "\n", |
| 116 | + "def get_record_file(record, file_type=\"fc_meta\"):\n", |
| 117 | + " files = record['files']\n", |
| 118 | + " files_of_type = [ x for x in files if file_type in x['name']]\n", |
| 119 | + " if len(files_of_type) > 0:\n", |
| 120 | + " return files_of_type[0]\n", |
| 121 | + " else:\n", |
| 122 | + " return None\n", |
| 123 | + "\n", |
| 124 | + "def get_data(experiment, record, file_type):\n", |
| 125 | + " fc_raw_file = get_record_file(record, file_type)\n", |
| 126 | + " if fc_raw_file:\n", |
| 127 | + " data_df = pd.read_csv(os.path.join(experiment, fc_raw_file['name']))\n", |
| 128 | + " return data_df\n", |
| 129 | + " else:\n", |
| 130 | + " return None\n", |
| 131 | + "\n", |
| 132 | + "def get_bins(df):\n", |
| 133 | + " return [float(x.split(\"_\")[1]) for x in df.columns if \"bin\" in x]\n", |
| 134 | + "\n", |
| 135 | + "def get_row_values(df,row_name,id_col):\n", |
| 136 | + " df_j = df.loc[df[id_col] == row_name]\n", |
| 137 | + " df_j = df_j[[x for x in df_j.columns if \"bin\" in x]]\n", |
| 138 | + " return df_j.values[0]\n", |
| 139 | + " \n", |
| 140 | + " " |
| 141 | + ] |
| 142 | + }, |
| 143 | + { |
| 144 | + "cell_type": "code", |
| 145 | + "execution_count": 5, |
| 146 | + "metadata": {}, |
| 147 | + "outputs": [], |
| 148 | + "source": [ |
| 149 | + "def do_analysis(experiment,datafile,id_col=\"sample_id\",channel_col=\"channel\",channel_val=\"BL1-A\"):\n", |
| 150 | + " # datafile is \"fc_raw_log10_stats.csv\" or \"fc_etl_stats.csv\"\n", |
| 151 | + "\n", |
| 152 | + " ## load dataset from data converge \n", |
| 153 | + " record = get_record(experiment)\n", |
| 154 | + " df = get_data(experiment, record, datafile)\n", |
| 155 | + " \n", |
| 156 | + " if df is None:\n", |
| 157 | + " return None\n", |
| 158 | + " \n", |
| 159 | + " # handle difference between etl and log10 histogram filesS\n", |
| 160 | + " if channel_col in df.columns:\n", |
| 161 | + " df = df.loc[df[channel_col] == channel_val]\n", |
| 162 | + "\n", |
| 163 | + "# ## Truncated for testing\n", |
| 164 | + "# df = df.iloc[:5]\n", |
| 165 | + "\n", |
| 166 | + " bins = get_bins(df) \n", |
| 167 | + " ids = list(df[id_col].values) \n", |
| 168 | + " res = np.zeros([len(ids),len(ids)])\n", |
| 169 | + " \n", |
| 170 | + " for j,s in enumerate(ids):\n", |
| 171 | + " s_bin_vals = get_row_values(df,s,id_col)\n", |
| 172 | + " for k,t in enumerate(ids[j+1:]):\n", |
| 173 | + " t_bin_vals = get_row_values(df,t,id_col)\n", |
| 174 | + " score = rank.emdist(s_bin_vals, t_bin_vals, bins)\n", |
| 175 | + " res[j,j+k+1] = 10**score\n", |
| 176 | + " res[j+k+1,j] = 10**score\n", |
| 177 | + " df_results = pd.DataFrame(data=res, index=ids, columns=ids)\n", |
| 178 | + " return df_results\n", |
| 179 | + "\n" |
| 180 | + ] |
| 181 | + }, |
| 182 | + { |
| 183 | + "cell_type": "code", |
| 184 | + "execution_count": 6, |
| 185 | + "metadata": {}, |
| 186 | + "outputs": [ |
| 187 | + { |
| 188 | + "name": "stdout", |
| 189 | + "output_type": "stream", |
| 190 | + "text": [ |
| 191 | + "dc_YeastSTATES-CRISPR-Short-Duration-Time-Series-20191208_20200423194115\n", |
| 192 | + "fc_raw_log10_stats.csv\n", |
| 193 | + "dc_YeastSTATES-CRISPR-Short-Duration-Time-Series-20191208_20200423194115\n", |
| 194 | + "fc_etl_stats.csv\n" |
| 195 | + ] |
| 196 | + }, |
| 197 | + { |
| 198 | + "name": "stderr", |
| 199 | + "output_type": "stream", |
| 200 | + "text": [ |
| 201 | + "/work/05258/bcummins/jupyter_packages/lib/python3.6/site-packages/flow_cytometry_scoring/rank_order_truth_tables.py:37: RuntimeWarning: invalid value encountered in true_divide\n", |
| 202 | + " return pyemd.emd(np.asarray(h1)/float(sum(h1)), np.asarray(h2)/float(sum(h2)), bin_dist)\n" |
| 203 | + ] |
| 204 | + }, |
| 205 | + { |
| 206 | + "name": "stdout", |
| 207 | + "output_type": "stream", |
| 208 | + "text": [ |
| 209 | + "dc_YeastSTATES-CRISPR-Short-Duration-Time-Series-35C_20200423195648\n", |
| 210 | + "fc_raw_log10_stats.csv\n", |
| 211 | + "dc_YeastSTATES-CRISPR-Short-Duration-Time-Series-35C_20200423195648\n", |
| 212 | + "fc_etl_stats.csv\n" |
| 213 | + ] |
| 214 | + } |
| 215 | + ], |
| 216 | + "source": [ |
| 217 | + "## Run Wasserstein analysis on all processed data sets\n", |
| 218 | + "\n", |
| 219 | + "for experiment in experiments:\n", |
| 220 | + " for datafile in [\"fc_raw_log10_stats.csv\",\"fc_etl_stats.csv\"]:\n", |
| 221 | + " experiment_name = experiment.split(\"/\")[-1]\n", |
| 222 | + " print(experiment_name)\n", |
| 223 | + " print(datafile)\n", |
| 224 | + " fname = experiment_name+\"_\"+datafile.split(\".\")[0]+\"_wasserstein_dists.csv\"\n", |
| 225 | + " if not os.path.exists(fname):\n", |
| 226 | + " df = do_analysis(experiment,datafile)\n", |
| 227 | + " df.to_csv(fname)\n" |
| 228 | + ] |
| 229 | + }, |
| 230 | + { |
| 231 | + "cell_type": "code", |
| 232 | + "execution_count": null, |
| 233 | + "metadata": {}, |
| 234 | + "outputs": [], |
| 235 | + "source": [] |
| 236 | + } |
| 237 | + ], |
| 238 | + "metadata": { |
| 239 | + "kernelspec": { |
| 240 | + "display_name": "Python 3", |
| 241 | + "language": "python", |
| 242 | + "name": "python3" |
| 243 | + }, |
| 244 | + "language_info": { |
| 245 | + "codemirror_mode": { |
| 246 | + "name": "ipython", |
| 247 | + "version": 3 |
| 248 | + }, |
| 249 | + "file_extension": ".py", |
| 250 | + "mimetype": "text/x-python", |
| 251 | + "name": "python", |
| 252 | + "nbconvert_exporter": "python", |
| 253 | + "pygments_lexer": "ipython3", |
| 254 | + "version": "3.6.8" |
| 255 | + } |
| 256 | + }, |
| 257 | + "nbformat": 4, |
| 258 | + "nbformat_minor": 2 |
| 259 | +} |
0 commit comments