-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathadp_ANN.py
135 lines (97 loc) · 3.86 KB
/
adp_ANN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#!/usr/bin/env python3
"""
ANN simulation of Alanine Dipeptide in vacuum with OpenMM and PySAGES.
"""
# %%
import argparse
import sys
import time
import numpy
import pysages
from pysages.colvars import DihedralAngle
from pysages.methods import ANN
from pysages.utils import try_import
from pysages.approxfun import compute_mesh
import matplotlib.pyplot as plt
import pickle
openmm = try_import("openmm", "simtk.openmm")
unit = try_import("openmm.unit", "simtk.unit")
app = try_import("openmm.app", "simtk.openmm.app")
# %%
pi = numpy.pi
kB = unit.BOLTZMANN_CONSTANT_kB * unit.AVOGADRO_CONSTANT_NA
kB = kB.value_in_unit(unit.kilojoules_per_mole / unit.kelvin)
T = 298.15 * unit.kelvin
dt = 2.0 * unit.femtoseconds
adp_pdb = "adp-vacuum.pdb"
kT = kB*T # cannot be passed to a `pysages.method` with the units
kT = 2.4789570296023884 # kJ/mol
# %%
def generate_simulation(pdb_filename=adp_pdb, T=T, dt=dt):
pdb = app.PDBFile(pdb_filename)
ff = app.ForceField("amber99sb.xml")
cutoff_distance = 1.0 * unit.nanometer
topology = pdb.topology
system = ff.createSystem(
topology, constraints=app.HBonds, nonbondedMethod=app.PME, nonbondedCutoff=cutoff_distance
)
# Set dispersion correction use.
forces = {}
for i in range(system.getNumForces()):
force = system.getForce(i)
forces[force.__class__.__name__] = force
forces["NonbondedForce"].setUseDispersionCorrection(True)
forces["NonbondedForce"].setEwaldErrorTolerance(1.0e-5)
positions = pdb.getPositions(asNumpy=True)
integrator = openmm.LangevinIntegrator(T, 1 / unit.picosecond, dt)
integrator.setRandomNumberSeed(42)
# platform = openmm.Platform.getPlatformByName(platform)
# simulation = app.Simulation(topology, system, integrator, platform)
simulation = app.Simulation(topology, system, integrator)
simulation.context.setPositions(positions)
simulation.minimizeEnergy()
return simulation
# %%
def get_args(argv):
available_args = [
("time-steps", "t", int, 5e5, "Number of simulation steps"),
# ("train-freq", "f", int, 5e3, "Frequency for neural network training"),
]
parser = argparse.ArgumentParser(description="Example script to run ANN")
for (name, short, T, val, doc) in available_args:
parser.add_argument("--" + name, "-" + short, type=T, default=T(val), help=doc)
return parser.parse_args(argv)
# %%
def main(argv=[]):
args = get_args(argv)
cvs = [DihedralAngle([4, 6, 8, 14]), DihedralAngle([6, 8, 14, 16])]
grid = pysages.Grid(lower=(-pi, -pi), upper=(pi, pi), shape=(50, 50), periodic=True)
topology = (8, 8)
method = ANN(cvs, grid, topology, kT)
tic = time.perf_counter()
raw_result = pysages.run(method, generate_simulation, args.time_steps)
toc = time.perf_counter()
print(f"Completed the simulation in {toc - tic:0.4f} seconds.")
# Pickle the results
pickle.dump( raw_result, open("raw_result.pickle", "wb") )
# analyze results and plot the free energy
result = pysages.analyze(raw_result)
fes_fn = result["fes_fn"]
# generate CV values on a grid to evaluate bias potential
plot_grid = pysages.Grid(lower=(-pi, -pi), upper=(pi, pi), shape=(64, 64), periodic=True)
xi = (compute_mesh(plot_grid) + 1) / 2 * plot_grid.size + plot_grid.lower
A = fes_fn(xi)
A = A.reshape(plot_grid.shape)
# plot and save free energy to a PNG file
fig, ax = plt.subplots(dpi=120)
im = ax.imshow(A, interpolation="bicubic", origin="lower", extent=[-pi, pi, -pi, pi])
ax.contour(A, levels=12, linewidths=0.75, colors="k", extent=[-pi, pi, -pi, pi])
ax.set_xlabel(r"$\phi$")
ax.set_ylabel(r"$\psi$")
cbar = plt.colorbar(im)
cbar.ax.set_ylabel(r"$A~[kJ/mol]$", rotation=270, labelpad=20)
fig.savefig("adp-fe.png", dpi=fig.dpi)
return result
# %%
if __name__ == "__main__":
main(sys.argv[1:])