Skip to content

Commit 2ec9bc3

Browse files
committed
fix link
1 parent c2fbb3e commit 2ec9bc3

File tree

2 files changed

+32
-12
lines changed

2 files changed

+32
-12
lines changed

weight-initialization/weight_initialization_exercise.ipynb

+28-10
Original file line numberDiff line numberDiff line change
@@ -102,7 +102,9 @@
102102
{
103103
"cell_type": "code",
104104
"execution_count": null,
105-
"metadata": {},
105+
"metadata": {
106+
"collapsed": true
107+
},
106108
"outputs": [],
107109
"source": [
108110
"import matplotlib.pyplot as plt\n",
@@ -245,7 +247,9 @@
245247
{
246248
"cell_type": "code",
247249
"execution_count": null,
248-
"metadata": {},
250+
"metadata": {
251+
"collapsed": true
252+
},
249253
"outputs": [],
250254
"source": [
251255
"import helpers\n",
@@ -280,7 +284,7 @@
280284
},
281285
"source": [
282286
"### Uniform Distribution\n",
283-
"A [uniform distribution](https://en.wikipedia.org/wiki/Uniform_distribution_(continuous%29) has the equal probability of picking any number from a set of numbers. We'll be picking from a continuous distribution, so the chance of picking the same number is low. We'll use NumPy's `np.random.uniform` function to pick random numbers from a uniform distribution.\n",
287+
"A [uniform distribution](https://en.wikipedia.org/wiki/Uniform_distribution) has the equal probability of picking any number from a set of numbers. We'll be picking from a continuous distribution, so the chance of picking the same number is low. We'll use NumPy's `np.random.uniform` function to pick random numbers from a uniform distribution.\n",
284288
"\n",
285289
">#### [`np.random_uniform(low=0.0, high=1.0, size=None)`](https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.uniform.html)\n",
286290
">Outputs random values from a uniform distribution.\n",
@@ -297,7 +301,9 @@
297301
{
298302
"cell_type": "code",
299303
"execution_count": null,
300-
"metadata": {},
304+
"metadata": {
305+
"collapsed": true
306+
},
301307
"outputs": [],
302308
"source": [
303309
"helpers.hist_dist('Random Uniform (low=-3, high=3)', np.random.uniform(-3, 3, [1000]))"
@@ -342,7 +348,9 @@
342348
{
343349
"cell_type": "code",
344350
"execution_count": null,
345-
"metadata": {},
351+
"metadata": {
352+
"collapsed": true
353+
},
346354
"outputs": [],
347355
"source": [
348356
"# create a new model with these weights\n",
@@ -353,7 +361,9 @@
353361
{
354362
"cell_type": "code",
355363
"execution_count": null,
356-
"metadata": {},
364+
"metadata": {
365+
"collapsed": true
366+
},
357367
"outputs": [],
358368
"source": [
359369
"# evaluate behavior \n",
@@ -381,7 +391,9 @@
381391
{
382392
"cell_type": "code",
383393
"execution_count": null,
384-
"metadata": {},
394+
"metadata": {
395+
"collapsed": true
396+
},
385397
"outputs": [],
386398
"source": [
387399
"# takes in a module and applies the specified weight initialization\n",
@@ -410,7 +422,9 @@
410422
{
411423
"cell_type": "code",
412424
"execution_count": null,
413-
"metadata": {},
425+
"metadata": {
426+
"collapsed": true
427+
},
414428
"outputs": [],
415429
"source": [
416430
"# takes in a module and applies the specified weight initialization\n",
@@ -432,7 +446,9 @@
432446
{
433447
"cell_type": "code",
434448
"execution_count": null,
435-
"metadata": {},
449+
"metadata": {
450+
"collapsed": true
451+
},
436452
"outputs": [],
437453
"source": [
438454
"# compare these two models\n",
@@ -471,7 +487,9 @@
471487
{
472488
"cell_type": "code",
473489
"execution_count": null,
474-
"metadata": {},
490+
"metadata": {
491+
"collapsed": true
492+
},
475493
"outputs": [],
476494
"source": [
477495
"helpers.hist_dist('Random Normal (mean=0.0, stddev=1.0)', np.random.normal(size=[1000]))"

weight-initialization/weight_initialization_solution.ipynb

+4-2
Original file line numberDiff line numberDiff line change
@@ -310,7 +310,7 @@
310310
},
311311
"source": [
312312
"### Uniform Distribution\n",
313-
"A [uniform distribution](https://en.wikipedia.org/wiki/Uniform_distribution_(continuous%29) has the equal probability of picking any number from a set of numbers. We'll be picking from a continuous distribution, so the chance of picking the same number is low. We'll use NumPy's `np.random.uniform` function to pick random numbers from a uniform distribution.\n",
313+
"A [uniform distribution](https://en.wikipedia.org/wiki/Uniform_distribution) has the equal probability of picking any number from a set of numbers. We'll be picking from a continuous distribution, so the chance of picking the same number is low. We'll use NumPy's `np.random.uniform` function to pick random numbers from a uniform distribution.\n",
314314
"\n",
315315
">#### [`np.random_uniform(low=0.0, high=1.0, size=None)`](https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.uniform.html)\n",
316316
">Outputs random values from a uniform distribution.\n",
@@ -745,7 +745,9 @@
745745
{
746746
"cell_type": "code",
747747
"execution_count": 17,
748-
"metadata": {},
748+
"metadata": {
749+
"collapsed": true
750+
},
749751
"outputs": [],
750752
"source": [
751753
"model_no_initialization = Net()"

0 commit comments

Comments
 (0)