|
22 | 22 | },
|
23 | 23 | {
|
24 | 24 | "cell_type": "code",
|
25 |
| - "execution_count": null, |
26 | 25 | "source": [
|
27 | 26 | "from safeds.data.tabular.containers import Table\n",
|
28 | 27 | "\n",
|
|
33 | 32 | "metadata": {
|
34 | 33 | "collapsed": false
|
35 | 34 | },
|
36 |
| - "outputs": [] |
| 35 | + "outputs": [], |
| 36 | + "execution_count": null |
37 | 37 | },
|
38 | 38 | {
|
39 | 39 | "cell_type": "markdown",
|
|
47 | 47 | },
|
48 | 48 | {
|
49 | 49 | "cell_type": "code",
|
50 |
| - "execution_count": null, |
51 | 50 | "source": [
|
52 | 51 | "train_table, testing_table = titanic.split_rows(0.6)\n",
|
53 | 52 | "\n",
|
|
56 | 55 | "metadata": {
|
57 | 56 | "collapsed": false
|
58 | 57 | },
|
59 |
| - "outputs": [] |
| 58 | + "outputs": [], |
| 59 | + "execution_count": null |
60 | 60 | },
|
61 | 61 | {
|
62 | 62 | "cell_type": "markdown",
|
|
72 | 72 | },
|
73 | 73 | {
|
74 | 74 | "cell_type": "code",
|
75 |
| - "execution_count": null, |
76 | 75 | "source": [
|
77 | 76 | "from safeds.data.tabular.transformation import OneHotEncoder\n",
|
78 | 77 | "\n",
|
|
81 | 80 | "metadata": {
|
82 | 81 | "collapsed": false
|
83 | 82 | },
|
84 |
| - "outputs": [] |
| 83 | + "outputs": [], |
| 84 | + "execution_count": null |
85 | 85 | },
|
86 | 86 | {
|
87 | 87 | "cell_type": "markdown",
|
|
94 | 94 | },
|
95 | 95 | {
|
96 | 96 | "cell_type": "code",
|
97 |
| - "execution_count": null, |
98 | 97 | "source": "transformed_table = encoder.transform(train_table)",
|
99 | 98 | "metadata": {
|
100 | 99 | "collapsed": false
|
101 | 100 | },
|
102 |
| - "outputs": [] |
| 101 | + "outputs": [], |
| 102 | + "execution_count": null |
103 | 103 | },
|
104 | 104 | {
|
105 | 105 | "cell_type": "markdown",
|
|
110 | 110 | },
|
111 | 111 | {
|
112 | 112 | "cell_type": "code",
|
113 |
| - "execution_count": null, |
114 | 113 | "source": [
|
115 | 114 | "extra_names = [\"id\", \"name\", \"ticket\", \"cabin\", \"port_embarked\", \"age\", \"fare\"]\n",
|
116 | 115 | "\n",
|
|
119 | 118 | "metadata": {
|
120 | 119 | "collapsed": false
|
121 | 120 | },
|
122 |
| - "outputs": [] |
| 121 | + "outputs": [], |
| 122 | + "execution_count": null |
123 | 123 | },
|
124 | 124 | {
|
125 | 125 | "cell_type": "markdown",
|
|
130 | 130 | },
|
131 | 131 | {
|
132 | 132 | "cell_type": "code",
|
133 |
| - "execution_count": null, |
134 | 133 | "source": [
|
135 | 134 | "from safeds.ml.classical.classification import RandomForestClassifier\n",
|
136 | 135 | "\n",
|
|
140 | 139 | "metadata": {
|
141 | 140 | "collapsed": false
|
142 | 141 | },
|
143 |
| - "outputs": [] |
| 142 | + "outputs": [], |
| 143 | + "execution_count": null |
144 | 144 | },
|
145 | 145 | {
|
146 | 146 | "cell_type": "markdown",
|
|
154 | 154 | },
|
155 | 155 | {
|
156 | 156 | "cell_type": "code",
|
157 |
| - "execution_count": null, |
158 | 157 | "source": [
|
159 | 158 | "encoder = OneHotEncoder().fit(test_table, [\"sex\"])\n",
|
160 | 159 | "transformed_test_table = encoder.transform(test_table)\n",
|
|
163 | 162 | " transformed_test_table\n",
|
164 | 163 | ")\n",
|
165 | 164 | "#For visualisation purposes we only print out the first 15 rows.\n",
|
166 |
| - "prediction.to_table().slice_rows(start=0, end=15)" |
| 165 | + "prediction.to_table().slice_rows(start=0, length=15)" |
167 | 166 | ],
|
168 | 167 | "metadata": {
|
169 | 168 | "collapsed": false
|
170 | 169 | },
|
171 |
| - "outputs": [] |
| 170 | + "outputs": [], |
| 171 | + "execution_count": null |
172 | 172 | },
|
173 | 173 | {
|
174 | 174 | "cell_type": "markdown",
|
|
181 | 181 | },
|
182 | 182 | {
|
183 | 183 | "cell_type": "code",
|
184 |
| - "execution_count": null, |
185 | 184 | "source": [
|
186 | 185 | "encoder = OneHotEncoder().fit(test_table, [\"sex\"])\n",
|
187 | 186 | "testing_table = encoder.transform(testing_table)\n",
|
|
192 | 191 | "metadata": {
|
193 | 192 | "collapsed": false
|
194 | 193 | },
|
195 |
| - "outputs": [] |
| 194 | + "outputs": [], |
| 195 | + "execution_count": null |
196 | 196 | }
|
197 | 197 | ],
|
198 | 198 | "metadata": {
|
|
0 commit comments