-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataToImage.py
35 lines (31 loc) · 1.58 KB
/
dataToImage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import os
import csv
import numpy as np
from PIL import Image
# 将分开的三个数据集转化为单通道灰度图,同时按照表情进行分类
datasets_path = r'C:\Users\sang\dataset'
train_csv = os.path.join(datasets_path, 'train.csv') # 获取数据
val_csv = os.path.join(datasets_path, 'val.csv')
test_csv = os.path.join(datasets_path, 'test.csv')
train_set = os.path.join(datasets_path, 'train') # 输出图片
val_set = os.path.join(datasets_path, 'val')
test_set = os.path.join(datasets_path, 'test')
for save_path, csv_file in [(train_set, train_csv), (val_set, val_csv), (test_set, test_csv)]:
if not os.path.exists(save_path): # 保存文件夹不存在则创建
os.makedirs(save_path)
num = 1
with open(csv_file) as f:
csvr = csv.reader(f)
header = next(csvr)
# 使用enumerate遍历csvr中的标签(label)和特征值(pixel)
for i, (label, pixel) in enumerate(csvr):
# 将特征值的数组转化为48*48的矩阵
pixel = np.asarray([float(p) for p in pixel.split()]).reshape(48, 48)
subfolder = os.path.join(save_path, label)
if not os.path.exists(subfolder):
os.makedirs(subfolder)
# 将该矩阵转化为RGB图像,再通过convert转化为8位灰度图像,L指灰度图模式,L=R*299/1000+G*587/1000+B*114/1000
img = Image.fromarray(pixel).convert('L')
image_name = os.path.join(subfolder, '{:05d}.jpg'.format(i))
print(image_name)
img.save(image_name)