-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_enhance.py
28 lines (27 loc) · 1.23 KB
/
data_enhance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import os
from keras.preprocessing.image import ImageDataGenerator
from keras.utils import image_utils
import PIL
datagen = ImageDataGenerator(
rotation_range=20, # 旋转范围
width_shift_range=0.1, # 水平平移范围
height_shift_range=0.1, # 垂直平移范围
shear_range=0.1, # 透视变换的范围
zoom_range=0.1, # 缩放范围
horizontal_flip=True, # 水平反转
fill_mode='nearest')
dir = 'C:/Users/sang/dataset/train/1' # 数据增强文件路径
for filename in os.listdir(dir):
print(filename)
img = image_utils.load_img(dir + '/' + filename) # 这是一个PIL图像
x = image_utils.img_to_array(img) # 把PIL图像转换成一个numpy数组,形状为(3, 150, 150)
x = x.reshape((1,) + x.shape) # 这是一个numpy数组,形状为 (1, 3, 150, 150)
# 下面是生产图片的代码
i = 0
for batch in datagen.flow(x, batch_size=1,
save_to_dir='C:/Users/sang/dataaug/train/1',
save_prefix='1',
save_format='jpeg'):
i += 1
if i > 5:
break # 否则生成器会退出循环