-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
82 lines (48 loc) · 2.41 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import streamlit as st
import cv2
import numpy as np
import matplotlib.pyplot as plt
st.title('�대�吏� 蹂���')
uploaded_file = st.file_uploader("�대�吏� �뚯씪 �낅줈��.....", type=["jpg", "jpeg", "png"])
def process_image(image):
ycrcb_image = cv2.cvtColor(image, cv2.COLOR_BGR2YCrCb)
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
Y_channel, Cr, Cb = cv2.split(ycrcb_image)
Y_channel = clahe.apply(Y_channel)
merged_ycrcb = cv2.merge([Y_channel, Cr, Cb])
final_image = cv2.cvtColor(merged_ycrcb, cv2.COLOR_YCrCb2BGR)
rgb_image = cv2.cvtColor(final_image, cv2.COLOR_BGR2RGB)
return rgb_image
def convert_image_to_grayscale(image):
##### 援ы쁽�섏꽭��.
return
def plot_histograms(original_image, processed_image):
Y_original, Cr_original, Cb_original = cv2.split(cv2.cvtColor(original_image, cv2.COLOR_BGR2YCrCb))
Y_processed, Cr_processed, Cb_processed = cv2.split(cv2.cvtColor(processed_image, cv2.COLOR_BGR2YCrCb))
channels = ('Y', 'Cr', 'Cb')
fig, axs = plt.subplots(2, 3, figsize=(16, 6))
for i, channel in enumerate([Y_original, Cr_original, Cb_original]):
histogram = cv2.calcHist([channel], [0], None, [256], [0, 256])
axs[0, i].plot(histogram)
axs[0, i].set_xlim([0, 256])
axs[0, i].set_title(f'Original {channels[i]} Histogram')
for i, channel in enumerate([Y_processed, Cr_processed, Cb_processed]):
histogram = cv2.calcHist([channel], [0], None, [256], [0, 256])
axs[1, i].plot(histogram)
axs[1, i].set_xlim([0, 256])
axs[1, i].set_title(f'Convert {channels[i]} Histogram')
return fig
if uploaded_file is not None:
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
image = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR)
st.image(uploaded_file, caption='Original Image', use_column_width=True)
option = st.selectbox(
'�먰븯�� 蹂��섏쓣 �좏깮�섏꽭��:',
('None', 'Histogram Equalization', '�묐갚蹂���')
)
if option == 'Histogram Equalization':
processed_image = process_image(image)
st.image(processed_image, caption = 'Histogram Equalized Image', use_column_width=True)
st.pyplot(plot_histograms(image, processed_image))
elif option == '�묐갚蹂���':
### 援ы쁽�섏꽭��.