-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathBE_RR.py
47 lines (40 loc) · 1.46 KB
/
BE_RR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from flask import Flask, jsonify, request
from surprise import SVD
from surprise import Dataset,Reader
from surprise import dump
import json
import pandas as pd
import xgboost as xgb
algs, algo = dump.load('baseline_model.pkl')
reader = Reader(rating_scale=(1, 10))
train = pd.read_csv("train_df.csv")
data = Dataset.load_from_df(train[['User-ID', 'ISBN', 'Book-Rating']], reader)
trainset = data.build_full_trainset()
app = Flask(__name__)
model = xgb.XGBRanker()
model.load_model('xgb.bin')
@app.route('/recommend', methods=['POST'])
def recommend():
user_data = request.get_json()
k = 5
user_id = int(user_data["user_id"])
if user_id not in list(train["User-ID"]):
return "User Doesn't Exists "
uid = trainset.to_inner_uid(user_id)
all_items = trainset.all_items()
x = trainset.ur[int(uid)]
a = [x[i][0] for i in range(len(x))]
not_rated_items = [item for item in all_items if item not in a]
predictions = []
for iid in not_rated_items:
pred = algo.predict(uid, trainset.to_raw_iid(iid))
predictions.append((iid, pred.est))
predictions_sorted = sorted(predictions, key=lambda x: x[1], reverse=True)[:k]
lst =()
for item, rating in predictions_sorted:
lst+= ((trainset.to_raw_iid(item),rating),)
dict_predictions = dict(lst)
return jsonify(dict_predictions)
# Run the Flask app
if __name__ == '__main__':
app.run(port=8000,debug=True)