-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLPAssignment.py
169 lines (167 loc) · 4.92 KB
/
LPAssignment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import numpy as np
def checkSolutionsValidity():
rows,cols=a.shape
flag=0
for i in range(rows):
sum=0
for j in range(cols):
sum+=a[i][j]*primalVars[j]
if sum>b[i]:
flag=1
break
if flag==1 :
break
if flag==1:
print(" Constraint {} is violated".format(i+1))
return False
else:
return True
def calculatePrimalSlack():
for i in range(noc):
sum=0
for j in range(nov):
sum+=a[i][j]*primalVars[j]
primalSlack.append(b[i][0]-sum)
# print(primalSlack[i])
def calculateDualSlackAndVariableValues():
for i in range(len(primalVars)):
if primalVars[i]!=0:
dualSlack.append(0)
else:
dualSlack.append(-1)
for i in range(len(primalSlack)):
if primalSlack[i]!=0:
dualVars.append(0)
else:
dualVars.append(-1)
c=a
c=np.transpose(c)
for i in range(len(dualSlack)):
templist=np.empty([nov,1])
for j in range(nov):
if j==i:
templist[j][0]=-1
else:
templist[j][0]=0
c=np.concatenate((c,templist),axis=1)
# print(c)
d=np.empty([nov,1])
for i in range(len(objcoeff)):
d[i][0]=objcoeff[i]
# print(dualVars)
rows,cols=c.shape
finalarr=np.empty([nov,1])
finalarr=np.delete(finalarr,0,1)
# print(finalarr)
for j in range(cols-len(dualSlack)):
if dualVars[j]!=0:
tempcol=np.empty([nov,1])
for k in range(rows):
tempcol[k][0]=c[k][j]
finalarr=np.concatenate((finalarr,tempcol),axis=1)
# print(finalarr)
for j in range(len(dualSlack)):
if dualSlack[j]!=0:
tempcol=np.empty([nov,1])
for k in range(rows):
tempcol[k][0]=c[k][len(dualVars)+j]
finalarr=np.concatenate((finalarr,tempcol),axis=1)
# print(finalarr)
finalrows,finalcols=finalarr.shape
val2=[]
oldflag=0
# =============================================================================
# print(finalrows,finalcols)
# print(dualVars,dualSlack)
# print(d)
# =============================================================================
if finalrows!=finalcols and finalcols==1:
for j in range(finalrows):
if finalarr[j][0]==0 and d[j][0]!=0:
oldflag=1
break
elif finalarr[j][0]!=0:
val2.append(d[j][0]/finalarr[j][0])
for i in range(len(val2)-1):
if val2[i]!=val2[i+1] or val2[i]<0:
oldflag=1
varindex=i
break
if oldflag==1:
print("The solution for dual does not exist since y{} is negative ".format(var+1))
return False
if(finalcols==0):
print("All the variables in dual form have values 0 and therefore no solution exist")
return False
# print(oldflag)
if finalcols!=finalrows:
return False
inverse=np.linalg.inv(finalarr)
result=np.dot(inverse,d)
k,flag=0,0
resrows,rescols=result.shape
for i in range(resrows):
if result[i]<0:
flag=1
break
if flag==0:
return True
else:
print('The solution for dual does not exist')
return False
# for i in range(len(dualVars)):
# if(dualVars[i]!=0):
# dualVars[i]=result[i][0]
# k++
# for i in range(len(dualSlack)):
# if dualSlack[i]!=0 && k<result.shape[0]:
# dualSlack[i]=result[k][0]
# k++
# dualnetsum=0
# for i in range(noc)
# dualnetsum+=b[i][0]*dualVars[i]
# primalnetsum=0
# for i in range(nov)
# primalnetsum+=objcoeff[i]*primalVars[i]
# if dualnetsum==primalnetsum:
# return true
primalSlack=[]
dualSlack=[]
primalVars=[]
objcoeff=[]
dualVars=[]
print('Enter the number of variables')
nov=int(input())
print('Enter the number of constraints')
noc=int(input())
a=np.empty([noc,nov])
b=np.empty([noc,1])
print('Enter the coefficient of objective function')
for i in range(nov):
objcoeff.append(int(input()))
for i in range(noc):
print("Enter the coefficient of constraint {}".format(i+1))
for j in range(nov):
a[i][j]=int(input())
print('Enter the values of vector b')
for i in range(noc):
b[i][0]=int(input())
print('Enter the coefficient of solution variables')
for i in range(nov):
primalVars.append(int(input()))
print('The slack form is :')
for i in range(noc):
for j in range(nov):
print("{}x{} + ".format(a[i][j],(j+1)),end=" ")
print("u{}={}".format((i+1),b[i][0]))
print('')
value=checkSolutionsValidity()
if value==False:
print('False')
else:
calculatePrimalSlack()
value=calculateDualSlackAndVariableValues()
if value==False:
print('False')
else:
print('True')