|
| 1 | +function legendre_ϕ_ψ(k) |
| 2 | + # TODO: row-major -> column major |
| 3 | + ϕ_coefs = zeros(k, k) |
| 4 | + ϕ_2x_coefs = zeros(k, k) |
| 5 | + |
| 6 | + p = Polynomial([-1, 2]) # 2x-1 |
| 7 | + p2 = Polynomial([-1, 4]) # 4x-1 |
| 8 | + |
| 9 | + for ki in 0:(k-1) |
| 10 | + l = convert(Polynomial, gen_poly(Legendre, ki)) # Legendre of n=ki |
| 11 | + ϕ_coefs[ki+1, 1:(ki+1)] .= sqrt(2*ki+1) .* coeffs(l(p)) |
| 12 | + ϕ_2x_coefs[ki+1, 1:(ki+1)] .= sqrt(2*(2*ki+1)) .* coeffs(l(p2)) |
| 13 | + end |
| 14 | + |
| 15 | + ψ1_coefs .= ϕ_2x_coefs |
| 16 | + ψ2_coefs = zeros(k, k) |
| 17 | + for ki in 0:(k-1) |
| 18 | + for i in 0:(k-1) |
| 19 | + a = ϕ_2x_coefs[ki+1, 1:(ki+1)] |
| 20 | + b = ϕ_coefs[i+1, 1:(i+1)] |
| 21 | + proj_ = proj_factor(a, b) |
| 22 | + @view ψ1_coefs[ki+1, :] .-= proj_ .* ϕ_coefs[i+1, :] |
| 23 | + @view ψ2_coefs[ki+1, :] .-= proj_ .* ϕ_coefs[i+1, :] |
| 24 | + end |
| 25 | + |
| 26 | + for j in 0:(k-1) |
| 27 | + a = ϕ_2x_coefs[ki+1, 1:(ki+1)] |
| 28 | + b = ψ1_coefs[j+1, :] |
| 29 | + proj_ = proj_factor(a, b) |
| 30 | + @view ψ1_coefs[ki+1, :] .-= proj_ .* ψ1_coefs[j+1, :] |
| 31 | + @view ψ2_coefs[ki+1, :] .-= proj_ .* ψ2_coefs[j+1, :] |
| 32 | + end |
| 33 | + |
| 34 | + a = ψ1_coefs[ki+1, :] |
| 35 | + norm1 = proj_factor(a, a) |
| 36 | + |
| 37 | + a = ψ2_coefs[ki+1, :] |
| 38 | + norm2 = proj_factor(a, a, complement=true) |
| 39 | + norm_ = sqrt(norm1 + norm2) |
| 40 | + ψ1_coefs[ki+1, :] ./= norm_ |
| 41 | + ψ2_coefs[ki+1, :] ./= norm_ |
| 42 | + zero_out!(ψ1_coefs) |
| 43 | + zero_out!(ψ2_coefs) |
| 44 | + end |
| 45 | + |
| 46 | + ϕ = [Polynomial(ϕ_coefs[i,:]) for i in 1:k] |
| 47 | + ψ1 = [Polynomial(ψ1_coefs[i,:]) for i in 1:k] |
| 48 | + ψ2 = [Polynomial(ψ2_coefs[i,:]) for i in 1:k] |
| 49 | + |
| 50 | + return ϕ, ψ1, ψ2 |
| 51 | +end |
| 52 | + |
| 53 | +# function chebyshev_ϕ_ψ(k) |
| 54 | +# ϕ_coefs = zeros(k, k) |
| 55 | +# ϕ_2x_coefs = zeros(k, k) |
| 56 | + |
| 57 | +# p = Polynomial([-1, 2]) # 2x-1 |
| 58 | +# p2 = Polynomial([-1, 4]) # 4x-1 |
| 59 | + |
| 60 | +# for ki in 0:(k-1) |
| 61 | +# if ki == 0 |
| 62 | +# ϕ_coefs[ki+1, 1:(ki+1)] .= sqrt(2/π) |
| 63 | +# ϕ_2x_coefs[ki+1, 1:(ki+1)] .= sqrt(4/π) |
| 64 | +# else |
| 65 | +# c = convert(Polynomial, gen_poly(Chebyshev, ki)) # Chebyshev of n=ki |
| 66 | +# ϕ_coefs[ki+1, 1:(ki+1)] .= 2/sqrt(π) .* coeffs(c(p)) |
| 67 | +# ϕ_2x_coefs[ki+1, 1:(ki+1)] .= sqrt(2) * 2/sqrt(π) .* coeffs(c(p2)) |
| 68 | +# end |
| 69 | +# end |
| 70 | + |
| 71 | +# ϕ = [ϕ_(ϕ_coefs[i, :]) for i in 1:k] |
| 72 | + |
| 73 | +# k_use = 2k |
| 74 | + |
| 75 | +# # phi = [partial(phi_, phi_coeff[i,:]) for i in range(k)] |
| 76 | + |
| 77 | +# # x = Symbol('x') |
| 78 | +# # kUse = 2*k |
| 79 | +# # roots = Poly(chebyshevt(kUse, 2*x-1)).all_roots() |
| 80 | +# # x_m = np.array([rt.evalf(20) for rt in roots]).astype(np.float64) |
| 81 | +# # # x_m[x_m==0.5] = 0.5 + 1e-8 # add small noise to avoid the case of 0.5 belonging to both phi(2x) and phi(2x-1) |
| 82 | +# # # not needed for our purpose here, we use even k always to avoid |
| 83 | +# # wm = np.pi / kUse / 2 |
| 84 | + |
| 85 | +# # psi1_coeff = np.zeros((k, k)) |
| 86 | +# # psi2_coeff = np.zeros((k, k)) |
| 87 | + |
| 88 | +# # psi1 = [[] for _ in range(k)] |
| 89 | +# # psi2 = [[] for _ in range(k)] |
| 90 | + |
| 91 | +# # for ki in range(k): |
| 92 | +# # psi1_coeff[ki,:] = phi_2x_coeff[ki,:] |
| 93 | +# # for i in range(k): |
| 94 | +# # proj_ = (wm * phi[i](x_m) * np.sqrt(2)* phi[ki](2*x_m)).sum() |
| 95 | +# # psi1_coeff[ki,:] -= proj_ * phi_coeff[i,:] |
| 96 | +# # psi2_coeff[ki,:] -= proj_ * phi_coeff[i,:] |
| 97 | + |
| 98 | +# # for j in range(ki): |
| 99 | +# # proj_ = (wm * psi1[j](x_m) * np.sqrt(2) * phi[ki](2*x_m)).sum() |
| 100 | +# # psi1_coeff[ki,:] -= proj_ * psi1_coeff[j,:] |
| 101 | +# # psi2_coeff[ki,:] -= proj_ * psi2_coeff[j,:] |
| 102 | + |
| 103 | +# # psi1[ki] = partial(phi_, psi1_coeff[ki,:], lb = 0, ub = 0.5) |
| 104 | +# # psi2[ki] = partial(phi_, psi2_coeff[ki,:], lb = 0.5, ub = 1) |
| 105 | + |
| 106 | +# # norm1 = (wm * psi1[ki](x_m) * psi1[ki](x_m)).sum() |
| 107 | +# # norm2 = (wm * psi2[ki](x_m) * psi2[ki](x_m)).sum() |
| 108 | + |
| 109 | +# # norm_ = np.sqrt(norm1 + norm2) |
| 110 | +# # psi1_coeff[ki,:] /= norm_ |
| 111 | +# # psi2_coeff[ki,:] /= norm_ |
| 112 | +# # psi1_coeff[np.abs(psi1_coeff)<1e-8] = 0 |
| 113 | +# # psi2_coeff[np.abs(psi2_coeff)<1e-8] = 0 |
| 114 | + |
| 115 | +# # psi1[ki] = partial(phi_, psi1_coeff[ki,:], lb = 0, ub = 0.5+1e-16) |
| 116 | +# # psi2[ki] = partial(phi_, psi2_coeff[ki,:], lb = 0.5+1e-16, ub = 1) |
| 117 | + |
| 118 | +# # return phi, psi1, psi2 |
| 119 | +# end |
| 120 | + |
| 121 | +function legendre_filter(k) |
| 122 | + # x = Symbol('x') |
| 123 | + # H0 = np.zeros((k,k)) |
| 124 | + # H1 = np.zeros((k,k)) |
| 125 | + # G0 = np.zeros((k,k)) |
| 126 | + # G1 = np.zeros((k,k)) |
| 127 | + # PHI0 = np.zeros((k,k)) |
| 128 | + # PHI1 = np.zeros((k,k)) |
| 129 | + # phi, psi1, psi2 = get_phi_psi(k, base) |
| 130 | + |
| 131 | + # ---------------------------------------------------------- |
| 132 | + |
| 133 | + # roots = Poly(legendre(k, 2*x-1)).all_roots() |
| 134 | + # x_m = np.array([rt.evalf(20) for rt in roots]).astype(np.float64) |
| 135 | + # wm = 1/k/legendreDer(k,2*x_m-1)/eval_legendre(k-1,2*x_m-1) |
| 136 | + |
| 137 | + # for ki in range(k): |
| 138 | + # for kpi in range(k): |
| 139 | + # H0[ki, kpi] = 1/np.sqrt(2) * (wm * phi[ki](x_m/2) * phi[kpi](x_m)).sum() |
| 140 | + # G0[ki, kpi] = 1/np.sqrt(2) * (wm * psi(psi1, psi2, ki, x_m/2) * phi[kpi](x_m)).sum() |
| 141 | + # H1[ki, kpi] = 1/np.sqrt(2) * (wm * phi[ki]((x_m+1)/2) * phi[kpi](x_m)).sum() |
| 142 | + # G1[ki, kpi] = 1/np.sqrt(2) * (wm * psi(psi1, psi2, ki, (x_m+1)/2) * phi[kpi](x_m)).sum() |
| 143 | + |
| 144 | + # PHI0 = np.eye(k) |
| 145 | + # PHI1 = np.eye(k) |
| 146 | + |
| 147 | + # ---------------------------------------------------------- |
| 148 | + |
| 149 | + # H0[np.abs(H0)<1e-8] = 0 |
| 150 | + # H1[np.abs(H1)<1e-8] = 0 |
| 151 | + # G0[np.abs(G0)<1e-8] = 0 |
| 152 | + # G1[np.abs(G1)<1e-8] = 0 |
| 153 | + |
| 154 | + # return H0, H1, G0, G1, PHI0, PHI1 |
| 155 | +end |
| 156 | + |
| 157 | +function chebyshev_filter(k) |
| 158 | + # x = Symbol('x') |
| 159 | + # H0 = np.zeros((k,k)) |
| 160 | + # H1 = np.zeros((k,k)) |
| 161 | + # G0 = np.zeros((k,k)) |
| 162 | + # G1 = np.zeros((k,k)) |
| 163 | + # PHI0 = np.zeros((k,k)) |
| 164 | + # PHI1 = np.zeros((k,k)) |
| 165 | + # phi, psi1, psi2 = get_phi_psi(k, base) |
| 166 | + |
| 167 | + # ---------------------------------------------------------- |
| 168 | + |
| 169 | + # x = Symbol('x') |
| 170 | + # kUse = 2*k |
| 171 | + # roots = Poly(chebyshevt(kUse, 2*x-1)).all_roots() |
| 172 | + # x_m = np.array([rt.evalf(20) for rt in roots]).astype(np.float64) |
| 173 | + # # x_m[x_m==0.5] = 0.5 + 1e-8 # add small noise to avoid the case of 0.5 belonging to both phi(2x) and phi(2x-1) |
| 174 | + # # not needed for our purpose here, we use even k always to avoid |
| 175 | + # wm = np.pi / kUse / 2 |
| 176 | + |
| 177 | + # for ki in range(k): |
| 178 | + # for kpi in range(k): |
| 179 | + # H0[ki, kpi] = 1/np.sqrt(2) * (wm * phi[ki](x_m/2) * phi[kpi](x_m)).sum() |
| 180 | + # G0[ki, kpi] = 1/np.sqrt(2) * (wm * psi(psi1, psi2, ki, x_m/2) * phi[kpi](x_m)).sum() |
| 181 | + # H1[ki, kpi] = 1/np.sqrt(2) * (wm * phi[ki]((x_m+1)/2) * phi[kpi](x_m)).sum() |
| 182 | + # G1[ki, kpi] = 1/np.sqrt(2) * (wm * psi(psi1, psi2, ki, (x_m+1)/2) * phi[kpi](x_m)).sum() |
| 183 | + |
| 184 | + # PHI0[ki, kpi] = (wm * phi[ki](2*x_m) * phi[kpi](2*x_m)).sum() * 2 |
| 185 | + # PHI1[ki, kpi] = (wm * phi[ki](2*x_m-1) * phi[kpi](2*x_m-1)).sum() * 2 |
| 186 | + |
| 187 | + # PHI0[np.abs(PHI0)<1e-8] = 0 |
| 188 | + # PHI1[np.abs(PHI1)<1e-8] = 0 |
| 189 | + |
| 190 | + # ---------------------------------------------------------- |
| 191 | + |
| 192 | + # H0[np.abs(H0)<1e-8] = 0 |
| 193 | + # H1[np.abs(H1)<1e-8] = 0 |
| 194 | + # G0[np.abs(G0)<1e-8] = 0 |
| 195 | + # G1[np.abs(G1)<1e-8] = 0 |
| 196 | + |
| 197 | + # return H0, H1, G0, G1, PHI0, PHI1 |
| 198 | +end |
0 commit comments