@@ -115,17 +115,17 @@ Random.seed!(42)
115
115
" Metaheuristics.Algorithm{CCMO{NSGA2}} for sphere" => [
116
116
1.6659983952552437 , 4.731690734657798 ],
117
117
" Metaheuristics.Algorithm{MOEAD_DE} for sphere" => [
118
- 1.3118335977331483 , 5.478715622895562 ],
118
+ 0.989671094714782 , 6.418963025927054 ],
119
119
" Metaheuristics.Algorithm{SMS_EMOA} for sphere" => [
120
120
0.5003293369817386 , 7.837151299208113 ],
121
121
" Metaheuristics.Algorithm{NSGA2} for rastrigin" => [0.0 , 12.0 ],
122
122
" Metaheuristics.Algorithm{NSGA3} for rastrigin" => [
123
- 9.754810555001253 , 11.123569741993528 ],
123
+ 7.597191334401674 , 8.53603819834027 ],
124
124
" Metaheuristics.Algorithm{SPEA2} for rastrigin" => [0.0 , 12.0 ],
125
125
" Metaheuristics.Algorithm{CCMO{NSGA2}} for rastrigin" => [
126
126
2.600961284360525 , 3.4282466721631755 ],
127
127
" Metaheuristics.Algorithm{MOEAD_DE} for rastrigin" => [
128
- 2.4963842982482607 , 10.377445766099369 ],
128
+ 2.8812870528400936 , 7.145617997943864 ],
129
129
" Metaheuristics.Algorithm{SMS_EMOA} for rastrigin" => [0.0 , 12.0 ],
130
130
" Metaheuristics.Algorithm{NSGA2} for rosenbrock" => [
131
131
17.500214034475118 , 586.5039366722865 ],
@@ -136,19 +136,19 @@ Random.seed!(42)
136
136
" Metaheuristics.Algorithm{CCMO{NSGA2}} for rosenbrock" => [
137
137
2.600961284360525 , 3.4282466721631755 ],
138
138
" Metaheuristics.Algorithm{MOEAD_DE} for rosenbrock" => [
139
- 12.969698120217537 , 642.4135236259822 ],
139
+ 8.658481667869118 , 644.4544222985385 ],
140
140
" Metaheuristics.Algorithm{SMS_EMOA} for rosenbrock" => [
141
141
61.6898556398449 , 450.62433057243777 ],
142
142
" Metaheuristics.Algorithm{NSGA2} for ackley" => [
143
143
2.240787163704834 , 5.990002878952371 ],
144
144
" Metaheuristics.Algorithm{NSGA3} for ackley" => [
145
- 3.408535107623966 , 5.459538604033934 ],
145
+ 2.186720100012558 , 6.125797156949968 ],
146
146
" Metaheuristics.Algorithm{SPEA2} for ackley" => [
147
147
4.440892098500626e-16 , 6.593599079287213 ],
148
148
" Metaheuristics.Algorithm{CCMO{NSGA2}} for ackley" => [
149
149
2.600961284360525 , 3.4282466721631755 ],
150
150
" Metaheuristics.Algorithm{MOEAD_DE} for ackley" => [
151
- 4.440892098500626e-16 , 6.593599079287213 ],
151
+ 2.982885504039104 , 5.052934325547806 ],
152
152
" Metaheuristics.Algorithm{SMS_EMOA} for ackley" => [
153
153
3.370770500897429 , 5.510527199861947 ],
154
154
" Metaheuristics.Algorithm{NSGA2} for dtlz2" => [
@@ -172,7 +172,7 @@ Random.seed!(42)
172
172
" Metaheuristics.Algorithm{CCMO{NSGA2}} for schaffer_n2" => [
173
173
3.632401400816196e-17 , 4.9294679997494206e-17 ],
174
174
" Metaheuristics.Algorithm{MOEAD_DE} for schaffer_n2" => [
175
- 2.50317097527324 , 0.17460592430221922 ],
175
+ 1.5886671796558842 , 0.5469735282631156 ],
176
176
" Metaheuristics.Algorithm{SMS_EMOA} for schaffer_n2" => [
177
177
0.4978888767998813 , 1.67543922644328 ]
178
178
)
@@ -201,7 +201,7 @@ Random.seed!(42)
201
201
options = Options (debug = false , iterations = 250 )),
202
202
SMS_EMOA ()
203
203
]
204
-
204
+ Random . seed! ( 42 )
205
205
# Run tests for each problem and algorithm
206
206
for (prob_func, lb, ub) in problems
207
207
prob_name = string (prob_func)
@@ -213,7 +213,7 @@ Random.seed!(42)
213
213
if (alg_name == " Metaheuristics.Algorithm{CCMO{NSGA2}}" )
214
214
sol = solve (prob, alg)
215
215
else
216
- sol = solve (prob, alg; maxiters = 100 , use_initial = true )
216
+ sol = solve (prob, alg; maxiters = 10000 , use_initial = true )
217
217
end
218
218
219
219
# Tests
0 commit comments