- "answer": "\"\"\"\nExample of Search Graph\n\"\"\"\n\nimport os\nfrom dotenv import load_dotenv\nload_dotenv()\n\nfrom scrapegraphai.graphs import SearchGraph\nfrom scrapegraphai.utils import convert_to_csv, convert_to_json, prettify_exec_info\n\nfrom pydantic import BaseModel, Field\nfrom typing import List\n\n# ************************************************\n# Define the output schema for the graph\n# ************************************************\n\nclass Dish(BaseModel):\n name: str = Field(description=\"The name of the dish\")\n description: str = Field(description=\"The description of the dish\")\n\nclass Dishes(BaseModel):\n dishes: List[Dish]\n\n# ************************************************\n# Define the configuration for the graph\n# ************************************************\ngraph_config = {\n \"llm\": {\n \"api_key\": os.getenv(\"ANTHROPIC_API_KEY\"),\n \"model\": \"claude-3-haiku-20240307\",\n \"max_tokens\": 4000},\n}\n\n# ************************************************\n# Create the SearchGraph instance and run it\n# ************************************************\n\nsearch_graph = SearchGraph(\n prompt=\"List me Chioggia's famous dishes\",\n config=graph_config,\n schema=Dishes\n)\n\nresult = search_graph.run()\nprint(result)\n\n# ************************************************\n# Get graph execution info\n# ************************************************\n\ngraph_exec_info = search_graph.get_execution_info()\nprint(prettify_exec_info(graph_exec_info))\n\n# Save to json and csv\nconvert_to_csv(result, \"result\")\nconvert_to_json(result, \"result\")\n"
0 commit comments