Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number.
An example is the root-to-leaf path 1->2->3 which represents the number 123.
Find the total sum of all root-to-leaf numbers.
Note: A leaf is a node with no children.
Example:
Input: [1,2,3]
1
/ \
2 3
Output: 25
Explanation:
The root-to-leaf path 1->2 represents the number 12.
The root-to-leaf path 1->3 represents the number 13.
Therefore, sum = 12 + 13 = 25.
Example 2:
Input: [4,9,0,5,1]
4
/ \
9 0
/ \
5 1
Output: 1026
Explanation:
The root-to-leaf path 4->9->5 represents the number 495.
The root-to-leaf path 4->9->1 represents the number 491.
The root-to-leaf path 4->0 represents the number 40.
Therefore, sum = 495 + 491 + 40 = 1026.
- Method 1:DFS
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public int sumNumbers(TreeNode root) {
if(root == null) return 0;
List<Integer> result = new ArrayList<>();
dfs(root, 0, result);
int sum = result.get(0);
for(int i = 1; i < result.size(); i++)
sum += result.get(i);
return sum;
}
private void dfs(TreeNode root, int sum, List<Integer> result){
sum = sum * 10 + root.val;
if(root.left == null && root.right == null){
result.add(sum);
return;
}
if(root.left != null)
dfs(root.left, sum, result);
if(root.right != null)
dfs(root.right, sum, result);
}
}
典型的dfs,深度优先。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public int sumNumbers(TreeNode root) {
if(root == null) return 0;
List<Integer> temp = new LinkedList<>();
dfs(root, temp, 0);
int result = 0;
for(Integer s : temp) result += s;
return result;
}
private void dfs(TreeNode node, List<Integer> sum, int cur){
cur = cur * 10 + node.val;
if(node.left == null && node.right == null)
sum.add(cur);
else{
if(node.left != null) dfs(node.left, sum, cur);
if(node.right != null) dfs(node.right, sum, cur);
}
}
}
- Method 1: dfs
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ class Solution { private List<Integer> path; public int sumNumbers(TreeNode root) { this.path = new ArrayList<>(); dfs(root, 0); int res = 0; for(Integer n : path) res += n; return res; } private void dfs(TreeNode node, int cur){ if(node == null){ this.path.add(cur); return; } cur = cur * 10 + node.val; if(node.left == null && node.right == null) dfs(null, cur); if(node.left != null) dfs(node.left, cur); if(node.right != null) dfs(node.right, cur); } }
- Method 1: dfs
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ class Solution { private int sum = 0; public int sumNumbers(TreeNode root) { if(root == null) return 0; getNumber(root, 0); return this.sum; } private void getNumber(TreeNode node, int num){ int cur = num * 10 + node.val; if(node.left == null && node.right == null){ sum += cur; return; } if(node.left != null) getNumber(node.left, cur); if(node.right != null) getNumber(node.right, cur); } }