Skip to content

Latest commit

 

History

History
executable file
·
240 lines (226 loc) · 7.23 KB

210. Course Schedule II.md

File metadata and controls

executable file
·
240 lines (226 loc) · 7.23 KB

210. Course Schedule II

Question

There are a total of n courses you have to take, labeled from 0 to n-1.

Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]

Given the total number of courses and a list of prerequisite pairs, return the ordering of courses you should take to finish all courses.

There may be multiple correct orders, you just need to return one of them. If it is impossible to finish all courses, return an empty array.

Example 1:

Input: 2, [[1,0]] 
Output: [0,1]
Explanation: There are a total of 2 courses to take. To take course 1 you should have finished   
             course 0. So the correct course order is [0,1] .

Example 2:

Input: 4, [[1,0],[2,0],[3,1],[3,2]]
Output: [0,1,2,3] or [0,2,1,3]
Explanation: There are a total of 4 courses to take. To take course 3 you should have finished both
             courses 1 and 2. Both courses 1 and 2 should be taken after you finished course 0.
             So one correct course order is [0,1,2,3]. Another correct ordering is [0,2,1,3] .

Thinking:

  • Method:拓扑排序
class Solution {
    public int[] findOrder(int numCourses, int[][] prerequisites) {
        int[] result = new int[numCourses];
        List<Integer> tempList = new ArrayList<>();
        if(prerequisites == null) return result;
        Map<Integer, List<Integer>> map = new HashMap<>();
        int[] indegree = new int[numCourses];
        for(int i = 0; i < prerequisites.length; i++){
            int first = prerequisites[i][0];
            int second = prerequisites[i][1];
            if(!map.containsKey(second))
                map.put(second, new ArrayList<>());
            map.get(second).add(first);
            indegree[first]++;
        }
        LinkedList<Integer> q = new LinkedList<>();
        for(int i = 0; i < numCourses; i++)
            if(indegree[i] == 0)
                q.add(i);
        while(!q.isEmpty()){
            Integer n = q.poll();
            tempList.add(n);
            if(map.containsKey(n)){
                List<Integer> temp = map.get(n);
                for(Integer t : temp){
                    indegree[t]--;
                    if(indegree[t] == 0){
                        q.add(t);
                    }
                }
            }
        }
        if(tempList.size() != numCourses) return new int[0];
        for(int i = 0; i < numCourses; i++)
            result[i] = tempList.get(i);
        return result;
    }
}

二刷

  1. Method 1: Khan 排序
class Solution {
    public int[] findOrder(int numCourses, int[][] prerequisites) {
        int[] indegree = new int[numCourses];
        Map<Integer, List<Integer>> pre = new HashMap<>();
        for(int[] p : prerequisites){
            indegree[p[0]]++;
            List<Integer> temp = pre.containsKey(p[1]) ? pre.get(p[1]) : new ArrayList<>();
            temp.add(p[0]);
            pre.put(p[1], temp);
        }
        int[] order = new int[numCourses];
        int count = 0;
        LinkedList<Integer> queue = new LinkedList<>();
        for(int i = 0; i < numCourses; i++){
            if(indegree[i] == 0){
                queue.add(i);
            }
        }
        while(!queue.isEmpty()){
            int cur = queue.poll();
            order[count++] = cur;
            if(pre.containsKey(cur)){
                List<Integer> temp = pre.get(cur);
                for(Integer t : temp){
                    indegree[t]--;
                    if(indegree[t] == 0) queue.add(t);
                }
            }
        }
        for(int i = 0; i < numCourses; i++){
            if(indegree[i] != 0){
                return new int[0];
            }
        }
        return order;
    }
}
  1. Method 2: dfs
class Solution {
    List<Integer> order = new LinkedList<>();
    public int[] findOrder(int numCourses, int[][] prerequisites) {
        int[] indegree = new int[numCourses];
        Map<Integer, List<Integer>> pre = new HashMap<>();
        for(int[] p : prerequisites){
            indegree[p[0]]++;
            List<Integer> temp = pre.containsKey(p[1]) ? pre.get(p[1]) : new ArrayList<>();
            temp.add(p[0]);
            pre.put(p[1], temp);
        }
        boolean[] visited = new boolean[numCourses];
        for(int i = 0; i < numCourses; i++){
            if(!visited[i] && indegree[i] == 0)
                dfs(i, pre, indegree, visited);
        }
        for(boolean b : visited)
            if(!b) return new int[0];
        int[] orders = new int[numCourses];
        for(int i = 0; i < this.order.size(); i++){
            orders[i] = this.order.get(i);
        }
        return orders;
    }    
    private void dfs(int cur, Map<Integer, List<Integer>> pre, int[] indegree, boolean[] visited){
        visited[cur] = true;
        this.order.add(cur);
        if(pre.containsKey(cur)){
            List<Integer> temp = pre.get(cur);
            for(Integer t :temp){
                if((--indegree[t]) == 0 && !visited[t]){
                    dfs(t, pre, indegree, visited);
                }
            }
        }
    }
}

Third Time

  • Method 1: Topological sort + bfs
     class Solution {
     	public int[] findOrder(int numCourses, int[][] prerequisites) {
     		int[] order = new int[numCourses];
     		int[] indegree = new int[numCourses];
     		int index = 0;
     		Map<Integer, List<Integer>> map = new HashMap<>();
     		Set<Integer> remain = new HashSet<>();
     		for(int i = 0; i < numCourses; i++) remain.add(i);
     		for(int[] req : prerequisites){
     			indegree[req[0]]++;
     			List<Integer> nexts = map.containsKey(req[1]) ? map.get(req[1]): new ArrayList<>();
     			nexts.add(req[0]);
     			map.put(req[1], nexts);
     		}
     		Queue<Integer> queue = new LinkedList<>();
     		for(int i = 0; i < numCourses; i++){
     			if(indegree[i] == 0){
     				queue.offer(i);
     			}
     		}
     		while(!queue.isEmpty()){
     			int cur = queue.poll();
     			remain.remove(cur);
     			List<Integer> courses = map.get(cur);
     			order[index++] = cur;
     			if(courses == null){
     				remain.remove(cur);
     			}else{
     				for(Integer course : courses){
     					indegree[course]--;
     					if(indegree[course] == 0){
     						queue.offer(course);
     					}
     				}
     			}
     		}
     		return remain.isEmpty() ? order: new int[0];
     	}
     }

Amazon Session

  • Method 1: Topological sort
     class Solution {
     	public int[] findOrder(int numCourses, int[][] prerequisites) {
     		Map<Integer, List<Integer>> map = new HashMap<>();
     		int[] indegree = new int[numCourses];
     		for(int[] req : prerequisites){
     			indegree[req[0]]++;
     			List<Integer> list = map.getOrDefault(req[1], new ArrayList<>());
     			list.add(req[0]);
     			map.put(req[1], list);
     		}
     		Queue<Integer> q = new LinkedList<>();
     		for(int i = 0; i < numCourses; i++){
     			if(indegree[i] == 0){
     				q.offer(i);
     			}
     		}
     		List<Integer> result = new ArrayList<>();
     		while(!q.isEmpty()){
     			int cur = q.poll();
     			result.add(cur);
     			if(!map.containsKey(cur)) continue;
     			List<Integer> neighbours = map.get(cur);
     			for(Integer n : neighbours){
     				if(--indegree[n] == 0){
     					q.offer(n);
     				}
     			}
     		}
     		if(result.size() != numCourses) return new int[0];
     		int[] res = new int[numCourses];
     		int index = 0;
     		while(index < numCourses){
     			res[index] = result.get(index++);
     		}
     		return res;
     	}
     }