Find all possible combinations of k numbers that add up to a number n, given that only numbers from 1 to 9 can be used and each combination should be a unique set of numbers.
Note:
- All numbers will be positive integers.
- The solution set must not contain duplicate combinations.
Example 1:
Input: k = 3, n = 7
Output: [[1,2,4]]
Example 2:
Input: k = 3, n = 9
Output: [[1,2,6], [1,3,5], [2,3,4]]
- Method 1:sort
class Solution {
public List<List<Integer>> combinationSum3(int k, int n) {
List<List<Integer>> result = new ArrayList<>();
if(k == 0) return result;
backtrace(result, new ArrayList<Integer>(), new boolean[9], n, 0, k, 1);
return result;
}
private void backtrace(List<List<Integer>> result, List<Integer> list, boolean[] used, int target, int sum, int k, int start){
if(sum == target && list.size() == k){
result.add(new ArrayList<Integer>(list));
}else if(sum > target)
return;
else{
for(int i = start; i <= 9; i++){
if(used[i - 1]) continue;
used[i - 1] = true;
list.add(i);
backtrace(result, list, used, target, sum + i, k, i + 1);
list.remove(list.size() - 1);
used[i - 1] = false;
}
}
}
}
- Use backtrace to evaluate.
- Break out point: check the size of the array and the sum of the numbers in current array.
class Solution {
public List<List<Integer>> combinationSum3(int k, int n) {
List<List<Integer>> result = new LinkedList<>();
List<Integer> temp = new LinkedList<>();
backtrace(k, n, temp, result, 0, 1);
return result;
}
private void backtrace(int k, int n, List<Integer> temp, List<List<Integer>> result, int sum, int cur){
if(temp.size() == k){
if(sum == n){
List<Integer> copy = new LinkedList<>(temp);
result.add(copy);
}
}else{
for(int i = cur; i <= 9; i++){
temp.add(i);
backtrace(k, n, temp, result, sum + i, i + 1);
temp.remove(temp.size() - 1);
}
}
}
}
class Solution {
public List<List<Integer>> combinationSum3(int k, int n) {
List<List<Integer>> result = new LinkedList<>();
dfs(result, n, k, 0, new LinkedList<Integer>(), 1);
return result;
}
private void dfs(List<List<Integer>> result, int n, int k, int sum, List<Integer> temp, int index){
if(sum == n && temp.size() == k) result.add(new LinkedList<Integer>(temp));
else if(sum < n && temp.size() < k){
for(int i = index; i <= 9; i++){
if(i + sum > n) break;
temp.add(i);
dfs(result, n, k, sum + i, temp, i + 1);
temp.remove(temp.size() - 1);
}
}
}
}
- Method 1:recursion
class Solution { vector<vector<int>> res_; void dfs(vector<int>& temp, int target, int index, int sum, int k){ if(temp.size() == k && sum == target){ res_.emplace_back(temp); }else if(sum < target && temp.size() < k){ for(int i = index; i <= 9; ++i){ temp.emplace_back(i); dfs(temp, target, i + 1, sum + i, k); temp.pop_back(); } } } public: vector<vector<int>> combinationSum3(int k, int n) { vector<int> temp; dfs(temp, n, 1, 0, k); return res_; } };