Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
Example:
Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.
- Method:DP
- 记录下每个点的值,存在二维数组中。这种方法O(On^2),但是占空间,无法AC
class Solution {
public int maxSubArray(int[] nums) {
if(nums == null || nums.length == 0) return 0;
int len = nums.length;
int[][] dp = new int[len][len];
int result = Integer.MIN_VALUE;
for(int i = 0; i < len; i++){
dp[i][i] = nums[i];
result = Math.max(result, nums[i]);
}
for(int i = 0; i < len - 1; i++){
for(int j = i + 1; j < len; j++){
dp[i][j] = dp[i][j - 1] + nums[j];
result = Math.max(result, dp[i][j]);
}
}
return result;
}
}
- Method 2:
1.第二种方法是O(n),仍然是通过DP。
- 缓存两个值,最大值res,以及以某个点为开头的最大值cur。
- 什么时候更新cur,当某个点的值大于所缓存的值的时候[4, -6, 3],此时前两个的缓存值为-2,而第三个值本身为3,所以加上前两个值本身就是浪费,此时我们就以3为开头进行继续运算。
class Solution {
public int maxSubArray(int[] nums) {
if(nums == null || nums.length == 0) return 0;
int len = nums.length;
int curr = nums[0];
int res = nums[0];
for(int i = 1; i < len; i++){
curr = Math.max(nums[i], nums[i] + curr);
res = Math.max(res, curr);
}
return res;
}
}
二刷的时候还借鉴了一刷的结果。
class Solution {
public int maxSubArray(int[] nums) {
if(nums == null || nums.length == 0) return 0;
int cur = nums[0], max = nums[0];
for(int i = 1; i < nums.length; i++){
cur = Math.max(nums[i], cur + nums[i]);
max = Math.max(cur, max);
}
return max;
}
}
-
Method 1:
class Solution { public int maxSubArray(int[] nums) { int sum = nums[0], max = nums[0]; for(int i = 1; i < nums.length; ++i){ sum = Math.max(nums[i], sum + nums[i]); max = Math.max(sum, max); } return max; } }
-
Method 2: dp
- dp[i] the max value if using including current number.
- dp[i] = dp[i - 1] > 0 ? dp[i - 1] + nums[i]: nums[i]
- Need to use a variable to hold the global max value;
class Solution { public int maxSubArray(int[] nums) { int[] dp = new int[nums.length]; dp[0] = nums[0]; int max = nums[0]; for(int i = 1; i < nums.length; i++){ dp[i] = dp[i - 1] > 0 ? nums[i] + dp[i - 1] : nums[i]; max = Math.max(max, dp[i]); } return max; } }
- Method 1: dp
class Solution { public int maxSubArray(int[] nums) { if(nums == null || nums.length == 0) return 0; int len = nums.length; int res = Integer.MIN_VALUE; int[] dp = new int[len + 1]; dp[0] = 0; for(int i = 1; i <= len; i++){ dp[i] = Math.max(nums[i - 1], dp[i - 1] + nums[i - 1]); res = Math.max(res, dp[i]); } return res; } }
- Method 1: dp
class Solution { public int maxSubArray(int[] nums) { if(nums == null || nums.length == 0) return 0; int[] dp = new int[nums.length]; dp[0] = nums[0]; int max = nums[0]; for(int i = 1; i < nums.length; i++){ dp[i] = Math.max(nums[i] + dp[i - 1], nums[i]); max = Math.max(max, dp[i]); } return max; } }