Skip to content

Latest commit

 

History

History
executable file
·
83 lines (71 loc) · 1.86 KB

669. Trim a Binary Search Tree.md

File metadata and controls

executable file
·
83 lines (71 loc) · 1.86 KB

669. Trim a Binary Search Tree

Question:

Given a binary search tree and the lowest and highest boundaries as L and R, trim the tree so that all its elements lies in [L, R] (R >= L). You might need to change the root of the tree, so the result should return the new root of the trimmed binary search tree.

Example 1:

Input: 
    1
   / \
  0   2

  L = 1
  R = 2

Output: 
    1
      \
       2

Example 2:

Input: 
    3
   / \
  0   4
   \
    2
   /
  1

  L = 1
  R = 3

Output: 
      3
     / 
   2   
  /
 1

Solution:

  • Method 1: divide and conquer (O(V + E), time complexity of dfs )
    • divide: we do the trim for left and right node.
    • if current node is within the range, we just return current node.
    • if current node needs to be trimmed, we need to append the right node to the very right of left subtree and return the left node of current node.
    /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode(int x) { val = x; }
     * }
     */
    class Solution {
        public TreeNode trimBST(TreeNode root, int L, int R) {
            if(root == null) return root;
            TreeNode left = trimBST(root.left, L, R);
            root.left = left;
            TreeNode right = trimBST(root.right, L, R);
            root.right = right;
            if(root.val < L || root.val > R){
                if(root.left == null) return root.right;
                else{
                    TreeNode node = root.left;
                    while(node.right != null){
                        node = node.right;
                    }
                    node.right = root.right;
                    root.right = null;
                    return root.left;
                }
            }
            return root;
        }
    }