-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPIDController.py
122 lines (99 loc) · 3.6 KB
/
PIDController.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import random
from os import environ
import matplotlib.pyplot as plt
from dotenv import load_dotenv
from jax.numpy import clip
from controller.GeneralController import GeneralController
class PIDController(GeneralController):
"""PID controller class"""
# constructor
def __init__(self, learning_rate: float):
"""
Initialize the PID controller - results in an instance of PID controller
:param learning_rate: the learning rate (float)
"""
load_dotenv()
super().__init__(learning_rate)
self.params = {
"K_p": float(environ.get("K_P")), # blue
"K_d": float(environ.get("K_D")), # orange
"K_i": float(environ.get("K_I")), # green
}
self.track_K_p = []
self.track_K_i = []
self.track_K_d = []
def __str__(self):
"""String representation of the PID controller"""
return "PID_controller"
# public method
def update(
self,
params: dict,
current_state: float,
error_history: list[float],
target_state: float,
) -> float:
"""
Update the PID controller
:param params: the parameters of the PID controller (dict)
:param current_state: the current state (float)
:param error_history: the error history (list)
:param target_state: the target state (float)
:return: the output of the PID controller (float)
"""
self.error = target_state - current_state
self.proportional = params["K_p"] * self.error
self.derivate = params["K_d"] * super()._calculate_derivative()
self.integral = params["K_i"] * error_history
self.last_error = self.error
return self.proportional + self.derivate + self.integral
def update_params(self, grad: dict) -> None:
"""¨
Parameters update of the PID controller
:param grad: the gradients (dict)
:return: None
https://www.ibm.com/topics/gradient-descent
"""
# update the parameters
for k, V in self.params.items():
self.params[k] = V - self.learning_rate * grad[k]
# track the parameters for visualization
self.__track_params()
def __clip_grad(self, grad: dict, clip_value: float) -> dict:
"""
Clip the gradients
:param grad: the gradients (dict)
:param clip_value: the clip value (float)
:return: the clipped gradients (dict)
https://neptune.ai/blog/understanding-gradient-clipping-and-how-it-can-fix-exploding-gradients-problem
"""
grad = [
(
clip(gW, -clip_value, clip_value),
clip(gb, -clip_value, clip_value),
)
for gW, gb in grad
]
return grad
def visualization_params(self):
"""
Plot the parameters
:return: None
"""
plt.title("Control parameters")
plt.plot(self.track_K_p, label="K_p - prediction", color="blue")
plt.plot(self.track_K_d, label="K_d - derivative", color="orange")
plt.plot(self.track_K_i, label="K_i - integral", color="green")
plt.legend()
plt.savefig("Control_parameters.png")
plt.show()
# private method
def __track_params(self):
"""
Track the parameters by appending them to the lists
:return: None
"""
self.track_K_p.append(self.params["K_p"])
self.track_K_i.append(self.params["K_i"])
self.track_K_d.append(self.params["K_d"])
# https://softinery.com/blog/implementation-of-pid-controller-in-python/