-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDirect_GP.py
233 lines (191 loc) · 8.2 KB
/
Direct_GP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import os
import random
import time
from dataclasses import dataclass
import pyrallis
import gymnasium as gym
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from stable_baselines3.common.buffers import ReplayBuffer
from torch.utils.tensorboard import SummaryWriter
from torch.autograd import grad
from optim import ProgramOptimizer
from postfix_program import Program, NUM_OPERATORS, InvalidProgramException
import envs
@dataclass
class Args:
exp_name: str = os.path.basename(__file__)[: -len(".py")]
"""the name of this experiment"""
seed: int = 1
"""seed of the experiment"""
torch_deterministic: bool = True
"""if toggled, `torch.backends.cudnn.deterministic=False`"""
cuda: bool = False
"""if toggled, cuda will be enabled by default"""
track: bool = False
"""if toggled, this experiment will be tracked with Weights and Biases"""
wandb_project_name: str = "direct_GP"
"""the wandb's project name"""
wandb_entity: str = None
"""the entity (team) of wandb's project"""
capture_video: bool = False
"""whether to capture videos of the agent performances (check out `videos` folder)"""
save_model: bool = True
"""whether to save model into the `runs/{run_name}` folder"""
upload_model: bool = False
"""whether to upload the saved model to huggingface"""
hf_entity: str = ""
"""the user or org name of the model repository from the Hugging Face Hub"""
# Algorithm specific arguments
env_id: str = "SimpleGoal-v0"
"""the id of the environment"""
total_timesteps: int = 1_000
"""total timesteps of the experiments"""
learning_rate: float = 3e-4
"""the learning rate of the optimizer"""
buffer_size: int = int(1e6)
"""the replay memory buffer size"""
gamma: float = 0.99
"""the discount factor gamma"""
tau: float = 0.005
"""target smoothing coefficient (default: 0.005)"""
batch_size: int = 256
"""the batch size of sample from the reply memory"""
policy_noise: float = 0.1
"""the scale of policy noise"""
learning_starts: int = 1
"""timestep to start learning"""
policy_frequency: int = 128
"""the frequency of training policy (delayed)"""
noise_clip: float = 0.5
"""noise clip parameter of the Target Policy Smoothing Regularization"""
# Parameters for the program optimizer
num_individuals: int = 100
num_genes: int = 5
num_generations: int = 10
num_parents_mating: int = 8
mutation_probability: float = 0.1
def make_env(env_id, seed, idx, capture_video, run_name):
if capture_video and idx == 0:
env = gym.make(env_id, render_mode="rgb_array")
env = gym.wrappers.RecordVideo(env, f"videos/{run_name}")
else:
env = gym.make(env_id)
env = gym.wrappers.RecordEpisodeStatistics(env)
env.action_space.seed(seed)
return env
def get_state_actions(program_optimizers, obs, env, args):
program_actions = []
for i, o in enumerate(obs):
action = np.zeros(env.action_space.shape, dtype=np.float32)
for action_index in range(env.action_space.shape[0]):
action[action_index] = program_optimizers[action_index].get_action(o)
program_actions.append(action)
return np.array(program_actions)
@pyrallis.wrap()
def run_synthesis(args: Args):
N_INTERACTIONS = 0
run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{int(time.time())}"
if args.track:
import wandb
wandb.init(
project=args.wandb_project_name,
entity=args.wandb_entity,
sync_tensorboard=True,
config=vars(args),
name=run_name,
monitor_gym=True,
save_code=True,
)
writer = SummaryWriter(f"runs/{run_name}")
writer.add_text(
"hyperparameters",
"|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
)
# TRY NOT TO MODIFY: seeding
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = args.torch_deterministic
device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu")
# env setup
env = make_env(args.env_id, args.seed, 0, args.capture_video, run_name)
assert isinstance(env.action_space, gym.spaces.Box), "only continuous action space is supported"
# Actor is a learnable program
program_optimizers = [ProgramOptimizer(
args,
env.observation_space,
env.action_space.low[i],
env.action_space.high[i]
) for i in range(env.action_space.shape[0])]
# Add env reference to the ProgramOptimizer (dirty)
for p in program_optimizers:
p.env = env
p._fitness_func = p._fitness_func_env
for action_index in range(env.action_space.shape[0]):
print(f"a[{action_index}] = {program_optimizers[action_index].get_best_solution_str()}")
env.observation_space.dtype = np.float32
rb = ReplayBuffer(
args.buffer_size,
env.observation_space,
env.action_space,
device,
handle_timeout_termination=False,
)
start_time = time.time()
# TRY NOT TO MODIFY: start the game
obs, _ = env.reset(seed=args.seed)
for global_step in range(args.total_timesteps):
# ALGO LOGIC: put action logic here
if global_step < args.learning_starts:
action = env.action_space.sample()
else:
with torch.no_grad():
action = get_state_actions(program_optimizers, obs[None, :], env, args)[0]
action = np.random.normal(loc=action, scale=args.policy_noise)
print('ACTION', action)
# TRY NOT TO MODIFY: execute the game and log data.
next_obs, reward, termination, truncation, info = env.step(action)
N_INTERACTIONS += 1
# TRY NOT TO MODIFY: record rewards for plotting purposes
if 'episode' in info:
print(f"global_step={global_step}, episodic_return={info['episode']['r']}")
writer.add_scalar("charts/episodic_return", info["episode"]["r"], N_INTERACTIONS)
writer.add_scalar("charts/episodic_length", info["episode"]["l"], global_step)
# TRY NOT TO MODIFY: save data to reply buffer; handle `final_observation`
real_next_obs = next_obs.copy()
rb.add(obs, real_next_obs, action, reward, termination, info)
# RESET
if termination or truncation:
next_obs, _ = env.reset()
# TRY NOT TO MODIFY: CRUCIAL step easy to overlook
obs = next_obs
# ALGO LOGIC: training.
if global_step > args.learning_starts:
data = rb.sample(args.batch_size)
# Optimize the program
if global_step % args.policy_frequency == 0:
orig_program_actions = get_state_actions(program_optimizers, data.observations.detach().numpy(), env,
args)
cur_program_actions = np.copy(orig_program_actions)
# Fit the program optimizers on all the action dimensions
states = data.observations.detach().numpy()
actions = cur_program_actions
print('Best program:')
for action_index in range(env.action_space.shape[0]):
program_optimizers[action_index].fit(states, actions[:, action_index])
print(f"a[{action_index}] = {program_optimizers[action_index].get_best_solution_str()}")
# Add interactions during optimization
for pf, le in zip(program_optimizers[action_index].fitness_pop, program_optimizers[action_index].len_episodes):
N_INTERACTIONS += sum(le)
#print(N_INTERACTIONS)
writer.add_scalar("charts/episodic_return", sum(pf)/(args.num_generations + 1), N_INTERACTIONS)
#writer.add_scalar("charts/episodic_length", info["episode"]["l"], global_step)
writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step)
env.close()
writer.close()
if __name__ == "__main__":
run_synthesis()