-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathRPCA.py
270 lines (236 loc) · 11.9 KB
/
RPCA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import numpy as np
import matplotlib.pyplot as plt
from scipy import io
from scipy.sparse.linalg import svds
norm = np.linalg.norm
from matplotlib import rc
rc('text', usetex=True)
font = {'family' : 'serif', 'weight' : 'bold', 'size' : 18}
rc('font', **font)
fontSpecLarge = {'fontsize': 18,}
fontSpecMedium = {'fontsize': 12,}
from matplotlib.ticker import FormatStrFormatter
##########################################
def generate_bad_example(n,d):
X = np.random.normal(0,1,(n,d))
X[:,0] *= np.sqrt(1.1)
X[:,1] = np.sign(np.random.random(n)-0.5)*X[:,0]/np.sqrt(1.1)
return X
def add_perturbation_to_bad_example(X,alpha):
n,d = X.shape
Z = X.copy()
H = np.zeros(n,dtype=bool)
for i in range(n):
if np.random.random(1)<alpha:
Z[i,0] = 0; Z[i,1] = np.sign(Z[i,1])*2/alpha**(1./4); H[i] = True
return Z,H
# use alpha for gaussian, and 2*alpha for heavy tail
def first_filter(z,S0,alpha):
lower_lim = np.percentile(z[S0], alpha * 100)
upper_lim = np.percentile(z[S0], (1 - alpha) * 100)
return (z > lower_lim) & (z < upper_lim)
# modified double_filter choosing the best subspace
def double_filter(X,S,k,alpha,nu):
n,d = X[S].shape
S0 = S.copy() # S0 = S_{t-1}
_, _, VT = svds(X[S0], k=k, which='LM', return_singular_vectors="v"); U0 = VT.T
z = norm(np.dot(U0.T,X.T),axis=0)**2
SG = first_filter(z,S0,alpha); SG = SG*S0 # SG \subseteq S_{t-1}
mu_S0 = z[S0].mean(); mu_SG = z[SG].mean()
Z = np.random.random()
W = Z*np.max((z-mu_SG)[S0*(~SG)])
S1 = SG|(((z-mu_SG)<W)*(S0*(~SG)))
return S1, mu_SG
# S is a bit mask of size len(X), on which double_filtering will run
def double_filter(X,S,k,alpha,nu):
n,d = X[S].shape
S0 = S.copy()
_, _, VT = svds(X[S0], k=k, which='LM', return_singular_vectors="v"); U0 = VT.T
z = norm(np.dot(U0.T,X.T),axis=0)**2
SG = first_filter(z,S0,alpha); SG = SG*S0
mu_S0 = z[S0].mean(); mu_SG = z[SG].mean()
if mu_S0-mu_SG <= 2*alpha*np.log(1/alpha): # the constant (48) probably needs to be tuned correctly depending on the desired error
return S, mu_SG
else:
Z = np.random.random()
W = Z*np.max((z-mu_SG)[S0*(~SG)])
S1 = SG|(((z-mu_SG)<W)*(S0*(~SG)))
return S1, mu_SG
def robust_subspace_estimation(X,alpha,delta,k,nu):
n,d = X.shape
S = []
S0 = np.ones(n,dtype=bool); S.append(S0)
S_max = np.zeros(n,dtype=bool)
# for l in range(int(np.log(2/delta)/np.log(6))+1):
for l in range(1):
t = 0; opt = 0
while t<int(np.ceil(9*alpha*n)+1):
if t>0 and (S[t]!=S[t-1]).sum()==0:
break
t += 1
S_new, mu_SG = double_filter(X,S[t-1],k,alpha,nu)
S.append(S_new.copy());
if S_max.sum()<S[t].sum():
S_max = S[t].copy()
_, _, VT = svds(X[S_max], k=k, which='LM', return_singular_vectors="v"); U_hat = VT.T
return U_hat, S_max
def V_bar(w,Y,t):
n,d = Y.shape
v = np.abs(np.dot(Y,w))
threshold = np.percentile(v,t*100.0/n)
return np.mean(v[v<threshold]**2)
def HRPCA(Y,k,T,t):
Y_hat = Y.copy()
s = 0; opt = 0; n,d = Y.shape
S = np.ones(n,dtype=bool); removed_indexes = []; s_max = 0;
while s<T:
Sigma_hat = np.dot(Y[S].T,Y[S])/S.sum()
_, _, VT = svds(Sigma_hat, k=k, which='LM', return_singular_vectors="v"); W = VT.T
v_bar_sum = 0;
for i in range(k):
v_bar_sum += V_bar(W[:,i],Y,t)
if v_bar_sum>opt:
opt = v_bar_sum; W_bar = W.copy(); s_max = s;
Q = np.dot(Y,W); p = np.sum(Q**2,axis=1); p[~S] = 0; p/=p.sum()
removed_indexes.append(np.random.choice(n,1,p=p)[0])
S[removed_indexes[-1]] = False;
s += 1
return W_bar, removed_indexes[:s_max]
d = 16
k = 1
alpha = 0.01
nu = 1 # not used
n = 10000
delta = 0.01
c = 0.1
a = 5
X = generate_bad_example(n,d)
Z,H = add_perturbation_to_bad_example(X,alpha); G = ~H
Sigma = np.eye(d); Sigma[0,0] += 0.1
U_hat, S_max = robust_subspace_estimation(Z,alpha,delta,k,nu)
print("fraction of corruption in data: %f" % H.mean())
print("Captured variance by RPCA: %f" % np.trace(np.dot(U_hat.T,np.dot(Sigma,U_hat))))
print("fraction of corruption after RPCA: %f" % float((H*S_max).sum()/S_max.sum()))
print("fraction of good points removed after RPCA: %f" % (((~S_max) * G).sum() / G.sum()))
print("fraction of points removed by RPCA: %f" % float(1.-S_max.sum()/n))
t = int((1.-alpha)*n)
T = n/4
W_bar, removed_indexes=HRPCA(Z, k, T, t)
S_max_hrpca=np.ones(n, dtype=bool); S_max_hrpca[removed_indexes] = False
print("fraction of corruption in data: %f" % H.mean())
print("Captured variance by HRPCA: %f" % np.trace(np.dot(W_bar.T, np.dot(Sigma, W_bar))))
print("fraction of corruption after HRPCA: %f" % float((H*S_max_hrpca).sum() / S_max.sum()))
print("fraction of good points removed after HRPCA: %f" % (((~S_max_hrpca) * G).sum() / G.sum()))
print("fraction of points removed by HRPCA: %f" % float(1.-S_max_hrpca.sum()/n))
n = 10000; d = 10; k = 1
delta = 0.001; nu = 1
Alpha = np.linspace(0.005,0.025,9)
# Alpha = [0.01]
times_RPCA = 100
times_HRPCA = 10
Top_good_eigval_RPCA = np.zeros((len(Alpha),times_RPCA))
Var_captured_RPCA = np.zeros((len(Alpha),times_RPCA));
Frac_corrupt_left_RPCA = np.zeros((len(Alpha),times_RPCA));
Frac_good_removed_RPCA = np.zeros((len(Alpha),times_RPCA));
Frac_removed_RPCA = np.zeros((len(Alpha),times_RPCA));
Top_good_eigval_HRPCA = np.zeros((len(Alpha),times_HRPCA))
Var_captured_HRPCA = np.zeros((len(Alpha),times_HRPCA))
Frac_corrupt_left_HRPCA = np.zeros((len(Alpha),times_HRPCA))
Frac_good_removed_HRPCA = np.zeros((len(Alpha),times_HRPCA))
Frac_removed_HRPCA = np.zeros((len(Alpha),times_HRPCA))
Sigma = np.eye(d); Sigma[0,0] += 0.1;
for i_alpha,alpha in enumerate(Alpha):
for time in range(times_RPCA):
X = generate_bad_example(n,d); Sigma_hat = np.dot(X.T,X)/n; _, _, VT = svds(Sigma_hat, k=k, which='LM', return_singular_vectors="v"); V = VT.T;
Z,H = add_perturbation_to_bad_example(X,alpha); G = ~H
Top_good_eigval_RPCA[i_alpha,time] = np.trace(np.dot(V.T,np.dot(Sigma,V)))
U_hat, S_max = robust_subspace_estimation(Z,alpha,delta,k,nu)
Var_captured_RPCA[i_alpha,time] = np.trace(np.dot(U_hat.T,np.dot(Sigma,U_hat)))
Frac_corrupt_left_RPCA[i_alpha,time] = float((H*S_max).sum()/S_max.sum())
Frac_good_removed_RPCA[i_alpha,time] = (((~S_max)*G).sum()/G.sum())
Frac_removed_RPCA[i_alpha,time] = (n-S_max.sum())/n
print("RPCA",alpha,time,Top_good_eigval_RPCA[i_alpha,time]-Var_captured_RPCA[i_alpha,time])
for time in range(times_HRPCA):
X = generate_bad_example(n,d); Sigma_hat = np.dot(X.T,X)/n; _, _, VT = svds(Sigma_hat, k=k, which='LM', return_singular_vectors="v"); V = VT.T;
Z,H = add_perturbation_to_bad_example(X,alpha); G = ~H
Top_good_eigval_HRPCA[i_alpha,time] = np.trace(np.dot(V.T,np.dot(Sigma,V)))
W_bar, removed_indexes = HRPCA(Z,k,n/4,(1-alpha)*n); S_max_hrpca = np.ones(n,dtype=bool); S_max_hrpca[removed_indexes] = False
Var_captured_HRPCA[i_alpha,time] = np.trace(np.dot(W_bar.T,np.dot(Sigma,W_bar)))
Frac_corrupt_left_HRPCA[i_alpha,time] = float((H*S_max_hrpca).sum()/S_max.sum())
Frac_good_removed_HRPCA[i_alpha,time] = (((~S_max_hrpca)*G).sum()/G.sum())
Frac_removed_HRPCA[i_alpha,time] = (n-S_max_hrpca.sum())/n
print("HRPCA",alpha,time,Top_good_eigval_HRPCA[i_alpha,time]-Var_captured_HRPCA[i_alpha,time])
Top_good_eigval_RPCA = np.array(Top_good_eigval_RPCA)
Var_captured_RPCA = np.array(Var_captured_RPCA)
Frac_corrupt_left_RPCA = np.array(Frac_corrupt_left_RPCA)
Frac_good_removed_RPCA = np.array(Frac_good_removed_RPCA)
Frac_removed_RPCA = np.array(Frac_removed_RPCA)
Top_good_eigval_HRPCA = np.array(Top_good_eigval_HRPCA)
Var_captured_HRPCA = np.array(Var_captured_HRPCA)
Frac_corrupt_left_HRPCA = np.array(Frac_corrupt_left_HRPCA)
Frac_good_removed_HRPCA = np.array(Frac_good_removed_HRPCA)
Frac_removed_HRPCA = np.array(Frac_removed_HRPCA)
dd = {}
dd['Top_good_eigval_RPCA'] = Top_good_eigval_RPCA
dd['Var_captured_RPCA'] = Var_captured_RPCA
dd['Frac_corrupt_left_RPCA'] = Frac_corrupt_left_RPCA
dd['Frac_good_removed_RPCA'] = Frac_good_removed_RPCA
dd['Frac_removed_RPCA'] = Frac_removed_RPCA
dd['Top_good_eigval_HRPCA'] = Top_good_eigval_HRPCA
dd['Var_captured_HRPCA'] = Var_captured_HRPCA
dd['Frac_corrupt_left_HRPCA'] = Frac_corrupt_left_HRPCA
dd['Frac_good_removed_HRPCA'] = Frac_good_removed_HRPCA
dd['Frac_removed_HRPCA'] = Frac_removed_HRPCA
filename = 'alpha_%d_%d.npy' % (times_RPCA,times_HRPCA)
np.save(filename,dd)
times_RPCA = 100; times_HRPCA = 10
filename = 'alpha_%d_%d.npy' % (times_RPCA,times_HRPCA)
dd = np.load(filename,allow_pickle=True)[()]
Alpha = np.linspace(0.005,0.025,9); n = 10000
Top_good_eigval_RPCA = dd['Top_good_eigval_RPCA']
Var_captured_RPCA = dd['Var_captured_RPCA']
Frac_corrupt_left_RPCA = dd['Frac_corrupt_left_RPCA']
Frac_good_removed_RPCA = dd['Frac_good_removed_RPCA']
Frac_removed_RPCA = dd['Frac_removed_RPCA']
Top_good_eigval_HRPCA = dd['Top_good_eigval_HRPCA']
Var_captured_HRPCA = dd['Var_captured_HRPCA']
Frac_corrupt_left_HRPCA = dd['Frac_corrupt_left_HRPCA']
Frac_good_removed_HRPCA = dd['Frac_good_removed_HRPCA']
Frac_removed_HRPCA = dd['Frac_removed_HRPCA']
Top_good_eigval = np.hstack((Top_good_eigval_RPCA,Top_good_eigval_HRPCA))
Oracle_var = Top_good_eigval.mean(axis=1)
Oracle_var_std = Top_good_eigval.std(axis=1)/np.sqrt(times_RPCA+times_HRPCA)
RPCA_var = Var_captured_RPCA.mean(axis=1)
RPCA_var_std = Var_captured_RPCA.std(axis=1)/np.sqrt(times_RPCA)
HRPCA_var = Var_captured_HRPCA.mean(axis=1)
HRPCA_var_std = Var_captured_HRPCA.std(axis=1)/np.sqrt(times_HRPCA)
prop_cycle = plt.rcParams['axes.prop_cycle']
colors = prop_cycle.by_key()['color']
y_oracle_tick = [Oracle_var.mean()]
plt.errorbar(Alpha, RPCA_var, yerr=RPCA_var_std, fmt="--o", ms="8", label=r"Algorithm $2$", c=colors[0])
plt.errorbar(Alpha, HRPCA_var, yerr=HRPCA_var_std, fmt="--s", ms="8", label=r"HRPCA", c=colors[1])
plt.axhline(y=Oracle_var.mean(), xmin=0, xmax=1, c="g", label=r"Oracle")
plt.grid(which='both',linestyle='dotted')
plt.legend(loc='center', bbox_to_anchor=(0.5,1.09),fancybox=False, shadow=False, ncol=3, **{'fontsize': 15,})
plt.ylim([1.0,1.1])
plt.yticks(list(plt.yticks()[0]) + y_oracle_tick)
plt.gca().yaxis.set_major_formatter(FormatStrFormatter('%0.3f'))
plt.tight_layout()
plt.savefig(filename[:-4]+"_.png",dpi=300); plt.close()
RPCA_frac_left = n*Frac_corrupt_left_RPCA.mean(axis=1)
HRPCA_frac_left = n*Frac_corrupt_left_HRPCA.mean(axis=1)
RPCA_frac_good_rem = n*Frac_good_removed_RPCA.mean(axis=1)
HRPCA_frac_good_rem = n*Frac_good_removed_HRPCA.mean(axis=1)
RPCA_frac_left_std = n*Frac_corrupt_left_RPCA.std(axis=1)/np.sqrt(times_RPCA)
HRPCA_frac_left_std = n*Frac_corrupt_left_HRPCA.std(axis=1)/np.sqrt(times_HRPCA)
RPCA_frac_good_rem_std = n*Frac_good_removed_RPCA.std(axis=1)/np.sqrt(times_RPCA)
HRPCA_frac_good_rem_std = n*Frac_good_removed_HRPCA.std(axis=1)/np.sqrt(times_HRPCA)
plt.errorbar(Alpha,RPCA_frac_left, yerr=RPCA_frac_left_std,fmt="--o",ms="8",label=r"Alg. $2$ remaining corrupted",fillstyle='none',c=colors[0])
plt.errorbar(Alpha,HRPCA_frac_left, yerr=HRPCA_frac_left_std,fmt="--s",ms="8",label=r"HRPCA remaining corrupted",fillstyle='none',c=colors[1])
plt.errorbar(Alpha,RPCA_frac_good_rem, yerr=RPCA_frac_good_rem_std,fmt=":o",ms="8",label=r"Alg. $2$ removed uncorrupted",c=colors[0])
plt.errorbar(Alpha,HRPCA_frac_good_rem, yerr=HRPCA_frac_good_rem_std,fmt=":s",ms="8",label=r"HRPCA removed uncorrupted",c=colors[1])
plt.yscale('log');
plt.grid(which='both',linestyle='dotted')
plt.legend(loc='center', bbox_to_anchor=(0.5,1.15),fancybox=False, shadow=False, ncol=2, **fontSpecMedium)
plt.tight_layout()
plt.savefig(filename[:-4]+"_frac.png",dpi=300); plt.close()