-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdatasets.py
284 lines (229 loc) · 8.42 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import numpy as np
from PIL import Image
import torch
from torch.utils.data import DataLoader, Dataset, ConcatDataset, Subset
from torchvision import datasets, transforms
from typing import Callable, Iterable, Tuple
from pathlib import Path
class NormalizeInverse(transforms.Normalize):
"""
Undoes the normalization and returns the reconstructed images in the input domain.
"""
def __init__(self, mean, std):
mean = torch.as_tensor(mean)
std = torch.as_tensor(std)
std_inv = 1 / (std + 1e-7)
mean_inv = -mean * std_inv
super().__init__(mean=mean_inv, std=std_inv)
def __call__(self, tensor):
return super().__call__(tensor.clone())
CIFAR_PATH = Path("./data_cifar10")
CIFAR_TRANSFORM_NORMALIZE_MEAN = (0.4914, 0.4822, 0.4465)
CIFAR_TRANSFORM_NORMALIZE_STD = (0.2023, 0.1994, 0.2010)
CIFAR_TRANSFORM_NORMALIZE = transforms.Normalize(
CIFAR_TRANSFORM_NORMALIZE_MEAN, CIFAR_TRANSFORM_NORMALIZE_STD
)
CIFAR_TRANSFORM_NORMALIZE_INV = NormalizeInverse(
CIFAR_TRANSFORM_NORMALIZE_MEAN, CIFAR_TRANSFORM_NORMALIZE_STD
)
CIFAR_TRANSFORM_TRAIN = transforms.Compose(
[
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
CIFAR_TRANSFORM_NORMALIZE,
]
)
CIFAR_TRANSFORM_TRAIN_XY = lambda xy: (CIFAR_TRANSFORM_TRAIN(xy[0]), xy[1])
CIFAR_TRANSFORM_TEST = transforms.Compose(
[
transforms.ToTensor(),
CIFAR_TRANSFORM_NORMALIZE,
]
)
CIFAR_TRANSFORM_TEST_XY = lambda xy: (CIFAR_TRANSFORM_TEST(xy[0]), xy[1])
class LabelSortedDataset(ConcatDataset):
def __init__(self, dataset: Dataset):
self.orig_dataset = dataset
self.by_label = {}
for i, (_, y) in enumerate(dataset):
self.by_label.setdefault(y, []).append(i)
self.n = len(self.by_label)
assert set(self.by_label.keys()) == set(range(self.n))
self.by_label = [Subset(dataset, self.by_label[i]) for i in range(self.n)]
super().__init__(self.by_label)
def subset(self, labels: Iterable[int]) -> ConcatDataset:
if isinstance(labels, int):
labels = [labels]
return ConcatDataset([self.by_label[i] for i in labels])
class FilterDataset(Subset):
def __init__(self, dataset: Dataset, *, label: int):
indices = []
for i, (_, y) in enumerate(dataset):
if y == label:
indices.append(i)
super().__init__(dataset, indices)
class MappedDataset(Dataset):
def __init__(self, dataset: Dataset, mapper: Callable, seed=0):
self.dataset = dataset
self.mapper = mapper
self.seed = seed
def __getitem__(self, i: int):
if hasattr(self.mapper, 'seed'):
self.mapper.seed(i + self.seed)
return self.mapper(self.dataset[i])
def __len__(self):
return len(self.dataset)
class PoisonedDataset(Dataset):
def __init__(
self,
dataset: Dataset,
poisoner,
*,
label=None,
indices=None,
eps=500,
seed=1,
transform=None
):
self.orig_dataset = dataset
self.label = label
if not indices and not eps:
raise ValueError()
if not indices:
if label is not None:
clean_inds = [i for i, (x, y) in enumerate(dataset) if y == label]
else:
clean_inds = range(len(dataset))
rng = np.random.RandomState(seed)
indices = rng.choice(clean_inds, eps, replace=False)
self.indices = indices
self.poison_dataset = MappedDataset(Subset(dataset, indices), poisoner, seed=seed)
if transform:
self.poison_dataset = MappedDataset(self.poison_dataset, transform)
clean_indices = list(set(range(len(dataset))).difference(indices))
self.clean_dataset = Subset(dataset, clean_indices)
if transform:
self.clean_dataset = MappedDataset(self.clean_dataset, transform)
self.dataset = ConcatDataset([self.clean_dataset, self.poison_dataset])
def __getitem__(self, i: int):
return self.dataset[i]
def __len__(self):
return len(self.dataset)
class Poisoner(object):
def poison(self, x: Image.Image) -> Image.Image:
raise NotImplementedError()
def __call__(self, x: Image.Image) -> Image.Image:
return self.poison(x)
class PixelPoisoner(Poisoner):
def __init__(
self,
*,
method="pixel",
pos: Tuple[int, int] = (11, 16),
col: Tuple[int, int, int] = (101, 0, 25)
):
self.method = method
self.pos = pos
self.col = col
def poison(self, x: Image.Image) -> Image.Image:
ret_x = x.copy()
pos, col = self.pos, self.col
if self.method == "pixel":
ret_x.putpixel(pos, col)
elif self.method == "pattern":
ret_x.putpixel(pos, col)
ret_x.putpixel((pos[0] - 1, pos[1] - 1), col)
ret_x.putpixel((pos[0] - 1, pos[1] + 1), col)
ret_x.putpixel((pos[0] + 1, pos[1] - 1), col)
ret_x.putpixel((pos[0] + 1, pos[1] + 1), col)
elif self.method == "ell":
ret_x.putpixel(pos, col)
ret_x.putpixel((pos[0] + 1, pos[1]), col)
ret_x.putpixel((pos[0], pos[1] + 1), col)
return ret_x
class StripePoisoner(Poisoner):
def __init__(self, *, horizontal=True, strength=6, freq=16):
self.horizontal = horizontal
self.strength = strength
self.freq = freq
def poison(self, x: Image.Image) -> Image.Image:
arr = np.asarray(x)
(w, h, d) = arr.shape
assert w == h # have not tested w != h
mask = np.full(
(d, w, h), np.sin(np.linspace(0, self.freq * np.pi, h))
).swapaxes(0, 2)
if self.horizontal:
mask = mask.swapaxes(0, 1)
mix = np.asarray(x) + self.strength * mask
return Image.fromarray(np.uint8(mix.clip(0, 255)))
class MultiPoisoner(Poisoner):
def __init__(self, poisoners: Iterable[Poisoner]):
self.poisoners = poisoners
def poison(self, x):
for poisoner in self.poisoners:
x = poisoner.poison(x)
return x
class RandomPoisoner(Poisoner):
def __init__(self, poisoners: Iterable[Poisoner]):
self.poisoners = poisoners
self.rng = np.random.RandomState()
def poison(self, x):
poisoner = self.rng.choice(self.poisoners)
return poisoner.poison(x)
def seed(self, i):
self.rng.seed(i)
class LabelPoisoner(Poisoner):
def __init__(self, poisoner: Poisoner, target_label: int):
self.poisoner = poisoner
self.target_label = target_label
def poison(self, xy):
x, _ = xy
return self.poisoner(x), self.target_label
def seed(self, i):
if hasattr(self.poisoner, 'seed'):
self.poisoner.seed(i)
def load_cifar_dataset(train=True):
dataset = datasets.CIFAR10(root=str(CIFAR_PATH), train=train, download=True)
return dataset
def make_dataloader(dataset: Dataset, batch_size, *, shuffle=True, drop_last=True):
dataloader = DataLoader(
dataset,
batch_size=batch_size,
shuffle=shuffle,
num_workers=4,
pin_memory=True,
drop_last=drop_last,
)
return dataloader
def load_cifar_train(batch_size=32):
path = "./data_cifar10"
kwargs = {"num_workers": 4, "pin_memory": True, "drop_last": True}
transform_train = transforms.Compose(
[
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
]
)
trainset = datasets.CIFAR10(
root=path, train=True, download=True, transform=transform_train
)
trainloader = DataLoader(trainset, batch_size=batch_size, shuffle=True, **kwargs)
return trainloader
def load_cifar_test(batch_size=32):
path = "./data_cifar10"
kwargs = {"num_workers": 4, "pin_memory": True, "drop_last": True}
transform_test = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
]
)
testset = datasets.CIFAR10(
root=path, train=False, download=True, transform=transform_test
)
testloader = DataLoader(testset, batch_size=batch_size, shuffle=False, **kwargs)
return testloader