-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathutils.py
118 lines (85 loc) · 3.92 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import dlib
import cv2
import numpy as np
import math
def SharpenImage(src):
blur_img = cv2.GaussianBlur(src, (0, 0), 5)
usm = cv2.addWeighted(src, 1.5, blur_img, -0.5, 0)
return usm
def BilinearInsert(src, ux, uy):
# 双线性插值法
w, h, c = src.shape
if c == 3:
x1 = int(ux)
x2 = x1+1
y1 = int(uy)
y2 = y1+1
part1 = src[y1, x1].astype(np.float)*(float(x2)-ux)*(float(y2)-uy)
part2 = src[y1, x2].astype(np.float)*(ux-float(x1))*(float(y2)-uy)
part3 = src[y2, x1].astype(np.float) * (float(x2) - ux)*(uy-float(y1))
part4 = src[y2, x2].astype(np.float) * \
(ux-float(x1)) * (uy - float(y1))
insertValue = part1+part2+part3+part4
return insertValue.astype(np.int8)
def localTranslationWarp(srcImg, startX, startY, endX, endY, radius):
ddradius = float(radius * radius)
copyImg = np.zeros(srcImg.shape, np.uint8)
copyImg = srcImg.copy()
# 计算公式中的|m-c|^2
ddmc = (endX - startX) * (endX - startX) + \
(endY - startY) * (endY - startY)
H, W, C = srcImg.shape
for i in range(W):
for j in range(H):
# 计算该点是否在形变圆的范围之内
# 优化,第一步,直接判断是会在(startX,startY)的矩阵框中
if math.fabs(i-startX) > radius and math.fabs(j-startY) > radius:
continue
distance = (i - startX) * (i - startX) + \
(j - startY) * (j - startY)
if(distance < ddradius):
# 计算出(i,j)坐标的原坐标
# 计算公式中右边平方号里的部分
ratio = (ddradius-distance) / (ddradius - distance + ddmc)
ratio = ratio * ratio
# 映射原位置
UX = i - ratio * (endX - startX)
UY = j - ratio * (endY - startY)
# 根据双线性插值法得到UX,UY的值
value = BilinearInsert(srcImg, UX, UY)
# 改变当前 i ,j的值
copyImg[j, i] = value
return copyImg
def landmark_dec_dlib_fun(img_src, detector, predictor):
img_gray = cv2.cvtColor(img_src, cv2.COLOR_BGR2GRAY)
land_marks = []
rects = detector(img_gray, 0)
for i in range(len(rects)):
land_marks_node = np.matrix(
[[p.x, p.y] for p in predictor(img_gray, rects[i]).parts()])
land_marks.append(land_marks_node)
return land_marks
def face_thin_auto(src, detector, predictor):
landmarks = landmark_dec_dlib_fun(src, detector, predictor)
# 如果未检测到人脸关键点,就不进行瘦脸
if len(landmarks) == 0:
return src
for landmarks_node in landmarks:
left_landmark = landmarks_node[3]
left_landmark_down = landmarks_node[5]
right_landmark = landmarks_node[13]
right_landmark_down = landmarks_node[15]
endPt = landmarks_node[30]
# 计算第4个点到第6个点的距离作为瘦脸距离
r_left = math.sqrt((left_landmark[0, 0]-left_landmark_down[0, 0])*(left_landmark[0, 0]-left_landmark_down[0, 0]) +
(left_landmark[0, 1] - left_landmark_down[0, 1]) * (left_landmark[0, 1] - left_landmark_down[0, 1]))
# 计算第14个点到第16个点的距离作为瘦脸距离
r_right = math.sqrt((right_landmark[0, 0]-right_landmark_down[0, 0])*(right_landmark[0, 0]-right_landmark_down[0, 0]) +
(right_landmark[0, 1] - right_landmark_down[0, 1]) * (right_landmark[0, 1] - right_landmark_down[0, 1]))
# 瘦左边脸
thin_image = localTranslationWarp(
src, left_landmark[0, 0], left_landmark[0, 1], endPt[0, 0], endPt[0, 1], r_left)
# 瘦右边脸
thin_image = localTranslationWarp(
thin_image, right_landmark[0, 0], right_landmark[0, 1], endPt[0, 0], endPt[0, 1], r_right)
return thin_image