Skip to content

Latest commit

 

History

History
21 lines (18 loc) · 676 Bytes

README.md

File metadata and controls

21 lines (18 loc) · 676 Bytes

Implementing Neural network for predicting using pre-trained weights

Implementing Neural network for predicting the output without using any higher level python libraries using pre-trained weights I have used numpy library only to initialize the array and it is eventually converted back to python list.

inputs for script
  • Input array
  • pre-trained weights
  • model-architecture (.csv file)

To run the script :

$ python predicting_without_libraries.py
Layers Implemented:
  • Conv1D Layer
  • Dense Layer
  • Maxpool1D layer
Activation Functions:
  • Relu
  • Sigmoid