-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
175 lines (136 loc) · 6.76 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# -*- coding: UTF-8 -*-
'''
进行训练
'''
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import time
import os
import json
from math import ceil
import argparse
import copy
from ImageDataset import ImageDataset
from SimpleNet import SimpleNet
from tensorboardX import SummaryWriter
writer = SummaryWriter(log_dir='log')
def train_model(args, model, criterion, optimizer, scheduler, num_epochs, dataset_sizes, use_gpu):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
device = torch.device('cuda' if use_gpu else 'cpu')
for epoch in range(args.start_epoch, num_epochs):
# 每一个epoch中都有一个训练和一个验证过程(Each epoch has a training and validation phase)
for phase in ['train', 'test']:
if phase == 'train':
scheduler.step(epoch)
# 设置为训练模式(Set model to training mode)
model.train()
else:
# 设置为验证模式(Set model to evaluate mode)
model.eval()
running_loss = 0.0
running_corrects = 0
tic_batch = time.time()
# 在多个batch上依次处理数据(Iterate over data)
for i, (inputs, labels) in enumerate(dataloders[phase]):
inputs = inputs.to(device)
labels = labels.to(device)
# 梯度置零(zero the parameter gradients)
optimizer.zero_grad()
# 前向传播(forward)
# 训练模式下才记录操作以进行反向传播(track history if only in train)
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# 训练模式下进行反向传播与梯度下降(backward + optimize only if in training phase)
if phase == 'train':
loss.backward()
optimizer.step()
# 统计损失和准确率(statistics)
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
batch_loss = running_loss / (i * args.batch_size + inputs.size(0))
batch_acc = running_corrects.double() / (i * args.batch_size + inputs.size(0))
if phase == 'train' and (i + 1) % args.print_freq == 0:
print('[Epoch {}/{}]-[batch:{}/{}] lr:{:.6f} {} Loss: {:.6f} Acc: {:.4f} Time: {:.4f} sec/batch'.format(
epoch + 1, num_epochs, i + 1, ceil(dataset_sizes[phase]/args.batch_size), scheduler.get_lr()[0], phase, batch_loss, batch_acc, (time.time()-tic_batch)/args.print_freq))
tic_batch = time.time()
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
if epoch == 0 and os.path.exists('result.txt'):
os.remove('result.txt')
with open('result.txt', 'a') as f:
f.write('Epoch:{}/{} {} Loss: {:.4f} Acc: {:.4f} \n'.format(epoch + 1, num_epochs, phase, epoch_loss, epoch_acc))
print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
writer.add_scalar(phase + '/Loss', epoch_loss, epoch)
writer.add_scalar(phase + '/Acc', epoch_acc, epoch)
if (epoch + 1) % args.save_epoch_freq == 0:
if not os.path.exists(args.save_path):
os.makedirs(args.save_path)
torch.save(model.state_dict(), os.path.join(args.save_path, "epoch_" + str(epoch) + ".pth"))
# 深拷贝模型(deep copy the model)
if phase == 'test' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
# 将model保存为graph
writer.add_graph(model, (inputs,))
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
print('Best val Accuracy: {:4f}'.format(best_acc))
# 载入最佳模型参数(load best model weights)
model.load_state_dict(best_model_wts)
return model
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='classification')
# 图片数据的根目录(Root catalog of images)
parser.add_argument('--data-dir', type=str, default='images')
parser.add_argument('--batch-size', type=int, default=16)
parser.add_argument('--num-epochs', type=int, default=150)
parser.add_argument('--lr', type=float, default=0.045)
parser.add_argument('--num-workers', type=int, default=4)
parser.add_argument('--print-freq', type=int, default=1)
parser.add_argument('--save-epoch-freq', type=int, default=1)
parser.add_argument('--save-path', type=str, default='output')
parser.add_argument('--resume', type=str, default='', help='For training from one checkpoint')
parser.add_argument('--start-epoch', type=int, default=0, help='Corresponding to the epoch of resume')
args = parser.parse_args()
# read data
dataloders, dataset_sizes, class_names = ImageDataset(args)
with open('class_names.json', 'w') as f:
json.dump(class_names, f)
# use gpu or not
use_gpu = torch.cuda.is_available()
print("use_gpu:{}".format(use_gpu))
# get model
model = SimpleNet()
if args.resume:
if os.path.isfile(args.resume):
print(("=> loading checkpoint '{}'".format(args.resume)))
model.load_state_dict(torch.load(args.resume))
else:
print(("=> no checkpoint found at '{}'".format(args.resume)))
if use_gpu:
model = torch.nn.DataParallel(model)
model.to(torch.device('cuda'))
else:
model.to(torch.device('cpu'))
# 用交叉熵损失函数(define loss function)
criterion = nn.CrossEntropyLoss()
# 梯度下降(Observe that all parameters are being optimized)
optimizer_ft = optim.SGD(model.parameters(), lr=args.lr, momentum=0.9, weight_decay=0.00004)
# Decay LR by a factor of 0.98 every 1 epoch
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=1, gamma=0.98)
model = train_model(args=args,
model=model,
criterion=criterion,
optimizer=optimizer_ft,
scheduler=exp_lr_scheduler,
num_epochs=args.num_epochs,
dataset_sizes=dataset_sizes,
use_gpu=use_gpu)
torch.save(model.state_dict(), os.path.join(args.save_path, 'best_model_wts.pth'))
writer.close()