-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
341 lines (300 loc) · 12.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
# -*- coding:utf-8 -*-
import os
import pickle
import random
import argparse
import platform
import numpy as np
from glob import glob
from tqdm import tqdm
import pandas as pd
import torch
import torch.nn.functional as F
from sklearn.utils import shuffle
from matplotlib import pyplot as plt
import delu
import rtdl
import scipy
from loguru import logger
from myutils import Utils
utils = Utils() # utils function
def load_data(pkl_list,label=True):
'''
输入pkl的列表,进行文件加载
label=True用来加载训练集
label=False用来加载真正的测试集,真正的测试集无标签
'''
X = []
y = []
for each_pkl in pkl_list:
pic = open(each_pkl,'rb')
item= pickle.load(pic)#下载pkl文件
# 此处选取的是每个滑窗的最后一条数据,仅供参考,可以选择其他的方法,比如均值或者其他处理时序数据的网络
# 此处选取了前7个特征,可以需求选取特征数量
feature = item[0][:,0:7][-1]
#feature = item[0][:,0:8][-1]
#feature = item[0][:,0:7].mean(axis=0)
#feature = np.append(item[0][:,0:7][-1],(item[0][:,3][-1] - item[0][:,4][-1])) #加max_single_volt - min_single_volt 一列为特征
feature=np.append(feature,item[1]["mileage"])
X.append(feature)
if label:
y.append(int(item[1]['label'][0]))
X = np.vstack(X)
if label:
y = np.vstack(y)
return X, y
def normalization(data):
"""
归一化数据
"""
_mean = np.mean(data, axis=0)
_std = np.std(data, axis=0)
data = (data - _mean) / (_std + 1e-4)
return data
class FTTransformer():
'''
The original code: https://yura52.github.io/rtdl/stable/index.html
The original paper: "Revisiting Deep Learning Models for Tabular Data", NIPS 2019
'''
def __init__(self, seed:int, model_name:str, n_epochs=1000, batch_size=256):
self.seed = seed
self.model_name = model_name
self.utils = Utils()
# device
if model_name == 'FTTransformer':
self.device = self.utils.get_device(gpu_specific=True)
else:
self.device = self.utils.get_device(gpu_specific=False)
# Docs: https://yura52.github.io/zero/0.0.4/reference/api/zero.improve_reproducibility.html
# zero.improve_reproducibility(seed=self.seed)
delu.improve_reproducibility(base_seed=int(self.seed))
# hyper-parameter
self.n_epochs = n_epochs # default is 1000
self.batch_size = batch_size # default is 256
def apply_model(self, x_num, x_cat=None):
if isinstance(self.model, rtdl.FTTransformer):
return self.model(x_num, x_cat)
elif isinstance(self.model, (rtdl.MLP, rtdl.ResNet)):
assert x_cat is None
return self.model(x_num)
else:
raise NotImplementedError(
f'Looks like you are using a custom model: {type(self.model)}.'
' Then you have to implement this branch first.'
)
@torch.no_grad()
def evaluate(self, X, y=None):
self.model.eval()
score = []
# for batch in delu.iter_batches(X[part], 1024):
for batch in delu.iter_batches(X, self.batch_size):
score.append(self.apply_model(batch))
score = torch.cat(score).squeeze(1).cpu().numpy()
score = scipy.special.expit(score)
# calculate the metric
if y is not None:
target = y.cpu().numpy()
metric = self.utils.metric(y_true=target, y_score=score)
else:
metric = {'aucroc': None, 'aucpr': None}
return score, metric['aucpr']
def fit(self, X_train, y_train, ratio=None,X_test=None,y_test=None):
# set seed
self.utils.set_seed(self.seed)
# training set is used as the validation set in the anomaly detection task
X = {'train': torch.from_numpy(X_train).float().to(self.device),
'val': torch.from_numpy(X_train).float().to(self.device)}
y = {'train': torch.from_numpy(y_train).float().to(self.device),
'val': torch.from_numpy(y_train).float().to(self.device)}
task_type = 'binclass'
n_classes = None
d_out = n_classes or 1
if self.model_name == 'ResNet':
self.model = rtdl.ResNet.make_baseline(
d_in=X_train.shape[1],
d_main=128,
d_hidden=256,
dropout_first=0.25,
dropout_second=0.0,
n_blocks=2,
d_out=d_out,
)
lr = 0.001
weight_decay = 0.0
elif self.model_name == 'MLP':
self.model = rtdl.MLP.make_baseline(
d_in=X_train.shape[1],
d_layers= [128, 256, 128],
dropout=0.25,
d_out=d_out,
)
lr = 0.001
weight_decay = 0.0
elif self.model_name == 'FTTransformer':
self.model = rtdl.FTTransformer.make_default(
n_num_features=X_train.shape[1],
cat_cardinalities=None,
last_layer_query_idx=[-1], # it makes the model faster and does NOT affect its output
d_out=d_out,
)
elif self.model_name == 'FTTransformer_baseline':
self.model = rtdl.FTTransformer.make_baseline(
n_num_features=X_train.shape[1],
cat_cardinalities=None,
d_token=X_train.shape[1],
n_blocks=2,
attention_dropout=0.2,
ffn_d_hidden=6,
ffn_dropout=0.2,
residual_dropout=0.0,
d_out=d_out,
)
else:
raise NotImplementedError
self.model.to(self.device)
optimizer = (
self.model.make_default_optimizer()
if isinstance(self.model, rtdl.FTTransformer)
else torch.optim.AdamW(self.model.parameters(), lr=lr, weight_decay=weight_decay)
)
loss_fn = (
F.binary_cross_entropy_with_logits
if task_type == 'binclass'
else F.cross_entropy
if task_type == 'multiclass'
else F.mse_loss
)
# Create a dataloader for batches of indices
# Docs: https://yura52.github.io/zero/reference/api/zero.data.IndexLoader.html
train_loader = delu.data.IndexLoader(len(X['train']), self.batch_size, device=self.device)
# Create a progress tracker for early stopping
# Docs: https://yura52.github.io/zero/reference/api/zero.ProgressTracker.html
progress = delu.ProgressTracker(patience=100)
# training
# report_frequency = len(X['train']) // self.batch_size // 5
for epoch in range(1, self.n_epochs + 1):
loss_tmp = []
for iteration, batch_idx in enumerate(train_loader):
self.model.train()
optimizer.zero_grad()
x_batch = X['train'][batch_idx]
y_batch = y['train'][batch_idx]
loss = loss_fn(self.apply_model(x_batch).squeeze(1), y_batch)
loss_tmp.append(loss.item())
loss.backward()
optimizer.step()
# if iteration % report_frequency == 0:
# print(f'(epoch) {epoch} (batch) {iteration} (loss) {loss.item():.4f}')
logger.info(f"Epoch {epoch:03d}/{self.n_epochs} | batch_size:{self.batch_size} | iteration:{iteration} | batch_loss:{loss.item():.4f}")
loss_.append(sum(loss_tmp)/len(loss_tmp))
_, val_metric = self.evaluate(X=X['val'], y=y['val'])
print(f'Epoch {epoch:03d} | Validation metric: {val_metric:.4f}', end='')
logger.info(f'Epoch {epoch:03d}/{self.n_epochs} | Validation metric: {val_metric:.4f} | Train loss:{sum(loss_tmp)/len(loss_tmp):.4f}')
progress.update((-1 if task_type == 'regression' else 1) * val_metric)
if progress.success:
print(' <<< BEST VALIDATION EPOCH', end='')
print()
# 验证
# output predicted anomaly score on testing set
score = self.predict_score(X_test)
# evaluation
result = utils.metric(y_true=y_test, y_score=score)
aucroc.append(result['aucroc'])
aucpr.append(result['aucpr'])
if progress.fail:
break
return self
def predict_score(self, X):
X = torch.from_numpy(X).float().to(self.device)
score, _ = self.evaluate(X=X, y=None)
return score
if __name__ == "__main__":
# 模型参数
parser = argparse.ArgumentParser()
parser.add_argument('--train', default='Train')
parser.add_argument('--test', default='Test_A')
parser.add_argument('--epoch',default=532)
parser.add_argument('--batch_size',default=256)
parser.add_argument('--model_name',default="ResNet", choices=["ResNet", "MLP", "FTTransformer"])
args = parser.parse_args()
data_path3 = args.test
epoch = int(args.epoch)
batch_size = int(args.batch_size)
model_name = args.model_name
#log文件
log = "log/train.log"
if not os.path.isdir(os.path.dirname(log)):
os.makedirs(os.path.dirname(log))
else:
# 删除历史log
if os.path.isfile(log):
os.remove(log)
logger.add(log,
rotation="500MB",
encoding="utf-8",
enqueue=True,
retention="10 days")
# 加载训练集的pkl文件,划分训练集与验证集
ind_pkl_files = []#存放标签为0的文件
ood_pkl_files = []#存放标签为1的文件
data_path=args.train#存放数据的路径
pkl_files = glob(data_path+'/*.pkl')
for each_path in tqdm(pkl_files):
pic = open(each_path,'rb')
this_pkl_file= pickle.load(pic)#下载pkl文件
if this_pkl_file[1]['label'] == '00':
ind_pkl_files.append(each_path)
else:
ood_pkl_files.append(each_path)
random.seed(0)
# 排序并打乱存放车辆序号的集合
random.shuffle(ind_pkl_files)
random.shuffle(ood_pkl_files)
# 3/4的正样本和全部的负样本作为训练集,1/4的正样本和1/4的负样本作为训练集
train_pkl_files = [ ind_pkl_files[j] for j in range(len(ind_pkl_files)//4,len(ind_pkl_files))] + [ ood_pkl_files[i] for i in range(len(ood_pkl_files))]
test_pkl_files=[ind_pkl_files[i] for i in range(len(ind_pkl_files)//4)] + [ood_pkl_files[i] for i in range(len(ood_pkl_files)//4)]
print(len(train_pkl_files))
print(len(test_pkl_files))
# 加载并归一化训练数据和验证数据
X_train,y_train=load_data(train_pkl_files)
# 进行随机打乱,这里random_state指定为固定值,则打乱结果相同
X_train,y_train = shuffle(X_train,y_train,random_state=40)
X_test,y_test=load_data(test_pkl_files)
X_train = normalization(X_train)
X_test = normalization(X_test)
test1_files = glob(data_path3+'/*.pkl')
X_val,_=load_data(test1_files,label=False)
X_val = normalization(X_val)
# 初始化模型。并进行训练
seed = 42
clf=FTTransformer(seed,model_name,n_epochs=epoch,batch_size=batch_size)
aucroc = []
aucpr = []
loss_ = []
clf = clf.fit(X_train=X_train, y_train=y_train.squeeze(1),X_test=X_test,y_test=y_test)
import platform
y_val_scores = clf.predict_score(X_val) #返回未知数据上的异常值 (分值越大越异常) # outlier scores
#记录文件名和对应的异常得分
predict_result={}
for i in tqdm(range(len(test1_files))):
file=test1_files[i]
#如果是window系统:
if platform.system().lower() == 'windows':
name=file.split('\\')[-1]
#如果是linux系统
elif platform.system().lower() == 'linux':
name=file.split('/')[-1]
predict_result[name]=y_val_scores[i]
predict_score=pd.DataFrame(list(predict_result.items()),columns=['file_name','score'])#列名必须为这俩个
predict_score.to_csv(f'submision.csv',index = False) #保存为比赛要求的csv文件
# 保存模型
torch.save(clf,"clf1.torch")
# 绘制loss曲线
plt.subplot(121)
plt.plot(aucroc,label="aucroc")
plt.plot(aucpr,label="aucpr")
plt.legend()
plt.subplot(122)
plt.plot(loss_,label="loss")
plt.legend()
plt.savefig("loss.png")