-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
60 lines (48 loc) · 1.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import time
from algorithm.fpGrowth import FPGrowth
from algorithm.apriori import Apriori
def str_to_list(input_data):
data_list = [
data.replace(',\n', '').split(',')
for data in input_data
]
return data_list
def get_results(func, data_list, minsup):
start_time = time.time()
fp_results = func(data_list, minsup)
end_time = time.time()
duration = end_time - start_time
return (duration, fp_results)
algorithm_list = {
'fp': FPGrowth,
'ap': Apriori
}
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--input',
default='data/sample.txt',
help='input data file name')
parser.add_argument('--output',
default='output.csv',
help='output file name')
parser.add_argument('--minsup',
default=0.3,
help='input minsup')
parser.add_argument('--algorithm',
default='fp',
help='frequent pattern algorithm')
args = parser.parse_args()
with open(args.input, 'r') as input_file, open(args.output, 'w') as output:
# Part: 1
# find frequent patterns
#
output.write('pattern,counts\n')
data_list = str_to_list(input_file)
fp_algorithm = algorithm_list[args.algorithm]
minsup = int( float(args.minsup) * len(data_list) )
(fp_duration, fp_results) = get_results(fp_algorithm, data_list, minsup)
for key in fp_results.fp_dict:
output.write(str(key) + ',' + str(fp_results.fp_dict[key]))
output.write('\n')
print(fp_duration)