-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
75 lines (63 loc) · 2.32 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import os
import argparse
import tensorflow as tf
from network import Network
from data_generator import DataGenerator
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import ModelCheckpoint
from utils import str2bool, read_pos_map, read_char_map, read_config, read_samples
parser = argparse.ArgumentParser(description='Start the training process.')
parser.add_argument('config', type=str, help='path to config file.')
parser.add_argument('train_set', type=str, help='path to training dataset.')
parser.add_argument('char_map', type=str, help='path to characters map file.')
parser.add_argument('pos_map', type=str, help='path to pos map file.')
parser.add_argument('--shuffle', type=str2bool, nargs='?',
help='whether to shuffle the dataset when creating the batch', default=True)
parser.add_argument('--epochs', type=int,
help='the number of epochs to train', default=100)
parser.add_argument('--output_dir', type=str,
help='path to output directory.', default="output")
args = parser.parse_args()
assert args.epochs > 0, "epochs must be larger than zero"
config = read_config(args.config)
os.makedirs(args.output_dir, exist_ok=True)
char_map = read_char_map(args.char_map)
pos_map = read_pos_map(args.pos_map)
samples = read_samples(args.train_set)
data_generator = DataGenerator(
samples=samples,
pos_map=pos_map,
char_map=char_map,
shuffle=args.shuffle,
batch_size=config["training"]["batch_size"],
)
model = Network(
output_dim=len(pos_map),
embedding_dim=len(char_map),
num_stacks=config["model"]["num_stacks"],
hidden_layers_dim=config["model"]["hidden_layers_dim"],
max_sentence_length=config["model"]["max_sentence_length"],
)
model.summary()
model.compile(
loss='categorical_crossentropy',
optimizer=Adam(learning_rate=config["training"]["learning_rate"])
)
model.fit(
x=data_generator,
shuffle=args.shuffle,
epochs=args.epochs,
callbacks=[
ModelCheckpoint(
filepath=os.path.join(
args.output_dir,
"cp_{epoch:02d}_loss-{loss:.2f}.h5"
),
save_weights_only=False,
save_best_only=True,
monitor='loss',
mode='min'
),
]
)
model.save_weights(os.path.join(args.output_dir, "model.h5"))