-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
271 lines (243 loc) · 9.48 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import os
import cv2
import numpy as np
import timm
from PIL import Image
import torch
import logging
import pandas as pd
import prettytable as pt
from typing import List, Literal, Tuple
from sklearn.model_selection import StratifiedKFold, train_test_split
from torchmetrics import (
Metric,
Accuracy,
Recall,
F1Score,
AUROC,
Specificity,
MetricCollection,
CohenKappa,
)
def logging_config(log_dir: str = None, rank: int = None):
"""Configure logging
Args:
log_dir (str, optional): The directory to save the log file. Defaults to None.
"""
if log_dir:
if not os.path.exists(log_dir):
os.makedirs(log_dir, exist_ok=True)
log_name = f"records_r{rank}" if rank is not None else "records"
handler = logging.FileHandler(f"{log_dir}/{log_name}.log")
formatter = logging.Formatter(
"%(asctime)s%(message)s", datefmt="[%y/%m%d %H:%M:%S]"
)
else:
handler = logging.StreamHandler()
formatter = logging.Formatter("%(message)s")
handler.setFormatter(formatter)
handler.setLevel(logging.INFO)
logging.getLogger().setLevel(logging.INFO)
logging.getLogger().handlers = [handler]
def kfold_split(
kfold: int, fold_num: int, disease_labels: pd.DataFrame
) -> List[pd.DataFrame]:
skf = StratifiedKFold(n_splits=kfold, shuffle=True, random_state=42)
train_idx, val_idx = list(
skf.split(disease_labels, y=disease_labels.iloc[:, 1:].values.argmax(axis=1))
)[fold_num]
train_disease_labels = disease_labels.iloc[train_idx, :]
val_disease_labels = disease_labels.iloc[val_idx, :]
test_disease_labels = val_disease_labels
return train_disease_labels, val_disease_labels, test_disease_labels
def handout_split(
val_size: float, test_size: float, disease_labels: pd.DataFrame
) -> List[pd.DataFrame]:
if test_size == 1:
return None, None, disease_labels
train_disease_labels, test_disease_labels = train_test_split(
disease_labels,
test_size=test_size,
stratify=disease_labels.iloc[:, 1:],
random_state=42,
)
if val_size:
train_disease_labels, val_disease_labels = train_test_split(
train_disease_labels,
test_size=val_size,
stratify=train_disease_labels.iloc[:, 1:],
random_state=42,
)
else:
val_disease_labels = test_disease_labels
return train_disease_labels, val_disease_labels, test_disease_labels
def configure_metrics(
num_disease: int = None,
num_lesion: int = None,
disease_avg: Literal["micro", "macro", "weighted"] = "micro",
lesion_avg: Literal["micro", "macro", "weighted"] = "micro",
device: str = "cpu",
) -> Tuple[MetricCollection, MetricCollection]:
"""Configure metrics for classification and concept detection tasks
Args:
n_cls (int, optional): Integer specifying the number of classes. Defaults to None.
n_cpt (int, optional): Integer specifying the number of concepts. Defaults to None.
average (Literal["micro", "macro"], optional): Defines the reduction that is applied over labels. Defaults to "micro".
Returns:
Tuple[MetricCollection, MetricCollection]: 1st element is classification metrics, 2rd element is concept detection metrics
"""
if num_disease:
task = "multiclass" if num_disease > 1 else "binary"
cls_metrics = MetricCollection(
{
"kappa": CohenKappa(
task=task, num_classes=num_disease, weights="quadratic"
),
"sensitivity": (
Recall(task=task, num_classes=num_disease, average=disease_avg)
if task == "multiclass"
else Recall(task=task, num_labels=num_disease, average=disease_avg)
),
"specificity": (
Specificity(task=task, num_classes=num_disease, average=disease_avg)
if task == "multiclass"
else Specificity(
task=task, num_labels=num_disease, average=disease_avg
)
),
"auc": (
AUROC(task=task, num_classes=num_disease, average="macro")
if task == "multiclass"
else AUROC(task=task, num_labels=num_disease, average="macro")
),
}
)
if disease_avg != "micro":
cls_metrics.add_metrics(
{
"acc": (
Accuracy(
task=task, num_classes=num_disease, average=disease_avg
)
if task == "multiclass"
else Accuracy(
task=task, num_labels=num_disease, average=disease_avg
)
),
"f1": (
F1Score(task=task, num_classes=num_disease, average=disease_avg)
if task == "multiclass"
else F1Score(
task=task, num_labels=num_disease, average=disease_avg
)
),
}
)
if num_lesion:
cpt_metrics = MetricCollection(
{
"f1": F1Score(
task="multilabel", num_labels=num_lesion, average=lesion_avg
),
"acc": Accuracy(
task="multilabel", num_labels=num_lesion, average=lesion_avg
),
"auc": AUROC(task="multilabel", num_labels=num_lesion, average="macro"),
},
prefix="cpt_",
)
return (
cls_metrics.to(device) if num_disease else None,
cpt_metrics.to(device) if num_lesion else None,
)
class CLSandCPTMetrics(Metric):
def __init__(
self,
cls_names: List[str],
cpt_names: List[str],
cls_avg: Literal["micro", "macro", "weighted"] = "micro",
cpt_avg: Literal["micro", "macro", "weighted"] = "micro",
**kwargs,
):
"""
Metrics for classification and concept detection tasks,
inherited from torchmetrics.Metric
Args:
cls_names (List[str]): The list of class names
cpt_names (List[str]): The list of concept names
cls_avg (Literal["micro", "macro"], optional): The average method
for classification metrics. Defaults to "micro".
cpt_avg (Literal["micro", "macro"], optional): The average method
for concept detection metrics. Defaults to "micro".
"""
super().__init__(**kwargs)
self.n_cls = len(cls_names)
self.n_cpt = len(cpt_names)
self.cls_names = cls_names
self.cpt_names = cpt_names
self.cls_metrics, self.cpt_metrics = configure_metrics(
self.n_cls, self.n_cpt, cls_avg, cpt_avg
)
def reset(self) -> None:
self.cls_metrics.reset()
self.cpt_metrics.reset()
def update(self, cls_logits, cls_lbls, cpt_logits, cpt_lbls) -> None:
self.cls_metrics.update(
(
cls_logits.detach().softmax(1)
if self.n_cls > 1
else cls_logits.detach().sigmoid()
),
cls_lbls,
)
self.cpt_metrics.update(cpt_logits.detach().sigmoid(), cpt_lbls)
def compute(self) -> dict:
cls_metrics = self.cls_metrics.compute()
cpt_metrics = self.cpt_metrics.compute()
self.result = {**cls_metrics, **cpt_metrics}
return self.result
def fit_rs2table(
epoch: int,
train_metrics: dict,
val_metrics: dict,
best_metrics: dict = None,
best_epoch: int = None,
) -> pt.PrettyTable:
table = pt.PrettyTable()
table.field_names = [f"Epoch {epoch}", *train_metrics.keys()]
table.add_row(["Train"] + [f"{v:.2%}" for v in train_metrics.values()])
table.add_row(["Val"] + [f"{v:.2%}" for v in val_metrics.values()])
if best_metrics and best_epoch:
table.add_row(
[f"Best ep{best_epoch}"] + [f"{v:.2%}" for v in best_metrics.values()]
)
return table
def test_rs2table(rs: dict) -> pt.PrettyTable:
table = pt.PrettyTable()
table.field_names = [""] + list(rs.keys())
row_data = [f"{v*100:.2f}" for v in rs.values()]
table.add_row(["Test"] + row_data)
return table
def load_timm_weights(model_name: str, model: torch.nn.Module):
checkpoint = timm.create_model(model_name, pretrained=True).state_dict()
model_dict = model.state_dict()
for k in ["head.weight", "head.bias"]:
if k in checkpoint and checkpoint[k].shape != model_dict[k].shape:
# print(f"Removing key {k} from pretrained checkpoint")
del checkpoint[k]
pretrained_dict = {k: v for k, v in checkpoint.items() if k in model_dict}
pretrained_dict = {
k: v for k, v in pretrained_dict.items() if k not in ["cls_token", "pos_embed"]
}
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
print(f"Loaded pretrained weights from {model_name}")
return model
def get_heatmap(cam_, img_path, img_size):
raw_img = Image.open(img_path).convert("RGB")
raw_img = np.array(raw_img.resize((img_size, img_size)))
heatmap = cv2.applyColorMap(np.uint8(255 * cam_), cv2.COLORMAP_JET)
heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)
cam = 0.5 * raw_img / 255.0 + 0.5 * heatmap / 255.0
cam = cam.transpose((2, 0, 1))
return cam