@@ -51,7 +51,6 @@ def load_pickles(folder_path):
51
51
# Filter and sort the files
52
52
pickle_files = sorted (
53
53
[file for file in files if file .startswith ("data_" ) and file .endswith (".pkl" )],
54
- key = lambda x : int (x .split ("_" )[1 ].split ("." )[0 ]),
55
54
)
56
55
57
56
data_list = []
@@ -124,7 +123,7 @@ def main(
124
123
controlnet_ckpt ,
125
124
model_folder ,
126
125
text_encoder_device ,
127
- load_tokenizers = True ,
126
+ load_tokenizers = False ,
128
127
)
129
128
130
129
print (f"Saving images to { out_dir } " )
@@ -150,8 +149,8 @@ def _get_precomputed_cond(sample):
150
149
# torch.save(neg_cond[0], os.path.join(out_dir, "neg_cond_0.pt"))
151
150
# torch.save(neg_cond[1], os.path.join(out_dir, "neg_cond_1.pt"))
152
151
neg_cond = (
153
- torch .load (os . path . join ( "outputs" , " neg_cond_0.pt") ),
154
- torch .load (os . path . join ( "outputs" , " neg_cond_1.pt") ),
152
+ torch .load (" neg_cond_0.pt" ),
153
+ torch .load (" neg_cond_1.pt" ),
155
154
)
156
155
157
156
for i , sample in tqdm (enumerate (dataset )):
@@ -161,7 +160,9 @@ def _get_precomputed_cond(sample):
161
160
else :
162
161
latent = inferencer .get_empty_latent (1 , width , height , seed , "cpu" )
163
162
latent = latent .cuda ()
164
- controlnet_cond = inferencer .vae_encode_tensor (sample ["vae_f8_ch16.cond.sft.latent" ])
163
+ controlnet_cond = inferencer .vae_encode_tensor (
164
+ sample ["vae_f8_ch16.cond.sft.latent" ]
165
+ )
165
166
conditioning = _get_precomputed_cond (sample )
166
167
seed_num = 42
167
168
sampled_latent = inferencer .do_sampling (
0 commit comments