Skip to content

accum-batches can't be used with autoencoder #201

@Jourdelune

Description

@Jourdelune

When we set "model_type": "autoencoder" in the configuration of the model, the argument accum-batches can't be used because automatic_optimization is disabled.

MisconfigurationException: Automatic gradient accumulation is not supported for manual optimization. Remove `Trainer(accumulate_grad_batches=32)` or switch to automatic optimization.

To fix the issue, I have written the code to accumulate the batch in the AutoencoderTrainingWrapper class.

if use_disc:
            loss, losses = self.losses_disc(loss_info)

            log_dict["train/disc_lr"] = opt_disc.param_groups[0]["lr"]

            # Gradient accumulation
            if self.gradient_accumulation is not None:
                loss = loss / self.gradient_accumulation

            self.manual_backward(loss)
            if self.clip_grad_norm > 0.0:
                torch.nn.utils.clip_grad_norm_(
                    self.discriminator.parameters(), self.clip_grad_norm
                )

            # accumulate gradients of N batches
            if (batch_idx + 1) % self.gradient_accumulation == 0:
                opt_disc.step()

                if sched_disc is not None:
                    # sched step every step
                    sched_disc.step()

                opt_disc.zero_grad()

        # Train the generator
        else:
            loss, losses = self.losses_gen(loss_info)

            if self.use_ema:
                self.autoencoder_ema.update()

            log_dict["train/loss"] = loss.detach().item()
            log_dict["train/latent_std"] = latents.std().detach().item()
            log_dict["train/data_std"] = data_std.detach().item()
            log_dict["train/gen_lr"] = opt_gen.param_groups[0]["lr"]

            # Gradient accumulation
            if self.gradient_accumulation is not None:
                loss = loss / self.gradient_accumulation

            self.manual_backward(loss)
            if self.clip_grad_norm > 0.0:
                torch.nn.utils.clip_grad_norm_(
                    self.autoencoder.parameters(), self.clip_grad_norm
                )

            # accumulate gradients of N batches
            if (batch_idx + 1) % self.gradient_accumulation == 0:
                opt_gen.step()

                if sched_gen is not None:
                    # scheduler step every step
                    sched_gen.step()

                opt_gen.zero_grad()

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions