-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformers.py
311 lines (236 loc) · 11.1 KB
/
transformers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import torch
import torch.nn as nn
import math
import numpy as np
import random
class PositionalEncoding(nn.Module):
def __init__(self, dim_model, dropout_p, max_len):
super().__init__()
# Modified version from: https://pytorch.org/tutorials/beginner/transformer_tutorial.html
# max_len determines how far the position can have an effect on a token (window)
# Info
self.dropout = nn.Dropout(dropout_p)
# Encoding - From formula
pos_encoding = torch.zeros(max_len, dim_model)
positions_list = torch.arange(0, max_len, dtype=torch.float).view(-1, 1) # 0, 1, 2, 3, 4, 5
division_term = torch.exp(torch.arange(0, dim_model, 2).float() * (-math.log(10000.0)) / dim_model) # 1000^(2i/dim_model)
# PE(pos, 2i) = sin(pos/1000^(2i/dim_model))
pos_encoding[:, 0::2] = torch.sin(positions_list * division_term)
# PE(pos, 2i + 1) = cos(pos/1000^(2i/dim_model))
pos_encoding[:, 1::2] = torch.cos(positions_list * division_term)
# Saving buffer (same as parameter without gradients needed)
pos_encoding = pos_encoding.unsqueeze(0).transpose(0, 1)
self.register_buffer("pos_encoding",pos_encoding)
def forward(self, token_embedding: torch.tensor) -> torch.tensor:
# Residual connection + pos encoding
return self.dropout(token_embedding + self.pos_encoding[:token_embedding.size(0), :])
class Transformer(nn.Module):
"""
Model from "A detailed guide to Pytorch's nn.Transformer() module.", by
Daniel Melchor: https://medium.com/@danielmelchor/a-detailed-guide-to-pytorchs-nn-transformer-module-c80afbc9ffb1
"""
# Constructor
def __init__(
self,
num_tokens,
dim_model,
num_heads,
num_encoder_layers,
num_decoder_layers,
dropout_p,
):
super().__init__()
# INFO
self.model_type = "Transformer"
self.dim_model = dim_model
# LAYERS
self.positional_encoder = PositionalEncoding(
dim_model=dim_model, dropout_p=dropout_p, max_len=5000
)
self.embedding = nn.Embedding(num_tokens, dim_model)
self.transformer = nn.Transformer(
d_model=dim_model,
nhead=num_heads,
num_encoder_layers=num_encoder_layers,
num_decoder_layers=num_decoder_layers,
dropout=dropout_p,
)
self.out = nn.Linear(dim_model, num_tokens)
def forward(self, src, tgt, tgt_mask=None, src_pad_mask=None, tgt_pad_mask=None):
# Src size must be (batch_size, src sequence length)
# Tgt size must be (batch_size, tgt sequence length)
# Embedding + positional encoding - Out size = (batch_size, sequence length, dim_model)
src = self.embedding(src) * math.sqrt(self.dim_model)
tgt = self.embedding(tgt) * math.sqrt(self.dim_model)
src = self.positional_encoder(src)
tgt = self.positional_encoder(tgt)
# We could use the parameter batch_first=True, but our KDL version doesn't support it yet, so we permute
# to obtain size (sequence length, batch_size, dim_model),
src = src.permute(1,0,2)
tgt = tgt.permute(1,0,2)
# Transformer blocks - Out size = (sequence length, batch_size, num_tokens)
transformer_out = self.transformer(src, tgt, tgt_mask=tgt_mask, src_key_padding_mask=src_pad_mask, tgt_key_padding_mask=tgt_pad_mask)
out = self.out(transformer_out)
return out
def get_tgt_mask(self, size) -> torch.tensor:
# Generates a squeare matrix where the each row allows one word more to be seen
mask = torch.tril(torch.ones(size, size) == 1) # Lower triangular matrix
mask = mask.float()
mask = mask.masked_fill(mask == 0, float('-inf')) # Convert zeros to -inf
mask = mask.masked_fill(mask == 1, float(0.0)) # Convert ones to 0
# EX for size=5:
# [[0., -inf, -inf, -inf, -inf],
# [0., 0., -inf, -inf, -inf],
# [0., 0., 0., -inf, -inf],
# [0., 0., 0., 0., -inf],
# [0., 0., 0., 0., 0.]]
return mask
def create_pad_mask(self, matrix: torch.tensor, pad_token: int) -> torch.tensor:
# If matrix = [1,2,3,0,0,0] where pad_token=0, the result mask is
# [False, False, False, True, True, True]
return (matrix == pad_token)
def generate_random_data(n):
SOS_token = np.array([2])
EOS_token = np.array([3])
length = 8
data = []
# 1,1,1,1,1,1 -> 1,1,1,1,1
for i in range(n // 3):
X = np.concatenate((SOS_token, np.ones(length), EOS_token))
y = np.concatenate((SOS_token, np.ones(length), EOS_token))
data.append([X, y])
# 0,0,0,0 -> 0,0,0,0
for i in range(n // 3):
X = np.concatenate((SOS_token, np.zeros(length), EOS_token))
y = np.concatenate((SOS_token, np.zeros(length), EOS_token))
data.append([X, y])
# 1,0,1,0 -> 1,0,1,0,1
for i in range(n // 3):
X = np.zeros(length)
start = random.randint(0, 1)
X[start::2] = 1
y = np.zeros(length)
if X[-1] == 0:
y[::2] = 1
else:
y[1::2] = 1
X = np.concatenate((SOS_token, X, EOS_token))
y = np.concatenate((SOS_token, y, EOS_token))
data.append([X, y])
np.random.shuffle(data)
return data
def batchify_data(data, batch_size=16, padding=False, padding_token=-1):
batches = []
for idx in range(0, len(data), batch_size):
# We make sure we dont get the last bit if its not batch_size size
if idx + batch_size < len(data):
# Here you would need to get the max length of the batch,
# and normalize the length with the PAD token.
if padding:
max_batch_length = 0
# Get longest sentence in batch
for seq in data[idx : idx + batch_size]:
if len(seq) > max_batch_length:
max_batch_length = len(seq)
# Append X padding tokens until it reaches the max length
for seq_idx in range(batch_size):
remaining_length = max_batch_length - len(data[idx + seq_idx])
data[idx + seq_idx] += [padding_token] * remaining_length
batches.append(np.array(data[idx : idx + batch_size]).astype(np.int64))
print(f"{len(batches)} batches of size {batch_size}")
return batches
def train_loop(model, opt, loss_fn, dataloader):
"""
Method from "A detailed guide to Pytorch's nn.Transformer() module.", by
Daniel Melchor: https://medium.com/@danielmelchor/a-detailed-guide-to-pytorchs-nn-transformer-module-c80afbc9ffb1
"""
model.train()
total_loss = 0
device = "cuda" if torch.cuda.is_available() else "cpu"
for batch in dataloader:
X, y = batch[:, 0], batch[:, 1]
X, y = torch.tensor(X).to(device), torch.tensor(y).to(device)
# Now we shift the tgt by one so with the <SOS> we predict the token at pos 1
y_input = y[:,:-1]
y_expected = y[:,1:]
# Get mask to mask out the next words
sequence_length = y_input.size(1)
tgt_mask = model.get_tgt_mask(sequence_length).to(device)
# Standard training except we pass in y_input and tgt_mask
pred = model(X, y_input, tgt_mask)
# Permute pred to have batch size first again
pred = pred.permute(1, 2, 0)
loss = loss_fn(pred, y_expected)
opt.zero_grad()
loss.backward()
opt.step()
total_loss += loss.detach().item()
return total_loss / len(dataloader)
def validation_loop(model, loss_fn, dataloader):
"""
Method from "A detailed guide to Pytorch's nn.Transformer() module.", by
Daniel Melchor: https://medium.com/@danielmelchor/a-detailed-guide-to-pytorchs-nn-transformer-module-c80afbc9ffb1
"""
model.eval()
total_loss = 0
device = "cuda" if torch.cuda.is_available() else "cpu"
with torch.no_grad():
for batch in dataloader:
X, y = batch[:, 0], batch[:, 1]
X, y = torch.tensor(X, dtype=torch.long, device=device), torch.tensor(y, dtype=torch.long, device=device)
# Now we shift the tgt by one so with the <SOS> we predict the token at pos 1
y_input = y[:,:-1]
y_expected = y[:,1:]
# Get mask to mask out the next words
sequence_length = y_input.size(1)
tgt_mask = model.get_tgt_mask(sequence_length).to(device)
# Standard training except we pass in y_input and src_mask
pred = model(X, y_input, tgt_mask)
# Permute pred to have batch size first again
pred = pred.permute(1, 2, 0)
loss = loss_fn(pred, y_expected)
total_loss += loss.detach().item()
return total_loss / len(dataloader)
def fit(model:nn.Transformer, train_dataloader, val_dataloader, epochs):
"""
Method from "A detailed guide to Pytorch's nn.Transformer() module.", by
Daniel Melchor: https://medium.com/@danielmelchor/a-detailed-guide-to-pytorchs-nn-transformer-module-c80afbc9ffb1
"""
device = "cuda" if torch.cuda.is_available() else "cpu"
model = model.to(device)
opt = torch.optim.SGD(model.parameters(), lr=0.01)
loss_fn = nn.CrossEntropyLoss()
# Used for plotting later on
train_loss_list, validation_loss_list = [], []
print("Training and validating model")
for epoch in range(epochs):
print("-"*25, f"Epoch {epoch + 1}","-"*25)
train_loss = train_loop(model, opt, loss_fn, train_dataloader)
train_loss_list += [train_loss]
validation_loss = validation_loop(model, loss_fn, val_dataloader)
validation_loss_list += [validation_loss]
print(f"Training loss: {train_loss:.4f}")
print(f"Validation loss: {validation_loss:.4f}")
print()
return train_loss_list, validation_loss_list
def predict(model, input_sequence, max_length=15, SOS_token=2, EOS_token=3):
"""
Method from "A detailed guide to Pytorch's nn.Transformer() module.", by
Daniel Melchor: https://medium.com/@danielmelchor/a-detailed-guide-to-pytorchs-nn-transformer-module-c80afbc9ffb1
"""
device = "cuda" if torch.cuda.is_available() else "cpu"
model.eval()
y_input = torch.tensor([[SOS_token]], dtype=torch.long, device=device)
num_tokens = len(input_sequence[0])
for _ in range(max_length):
# Get source mask
tgt_mask = model.get_tgt_mask(y_input.size(1)).to(device)
pred = model(input_sequence, y_input, tgt_mask)
next_item = pred.topk(1)[1].view(-1)[-1].item() # num with highest probability
next_item = torch.tensor([[next_item]], device=device)
# Concatenate previous input with predicted best word
y_input = torch.cat((y_input, next_item), dim=1)
# Stop if model predicts end of sentence
if next_item.view(-1).item() == EOS_token:
break
return y_input.view(-1).tolist()