-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdataset_generation.py
639 lines (536 loc) · 22.2 KB
/
dataset_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
"""Script to generate data for the font classification task.
Sample run:
```
python -m venv my-venv
source my-venv/bin/activate
pip install -r requirements.txt
python dataset_generation.py 100
```
"""
import colorsys
import cv2
import numpy as np
import os
import sys
import random
import traceback
import wikipedia
from PIL import Image, ImageDraw, ImageFont
from argparse import ArgumentParser
from loguru import logger
from pathlib import Path
from sklearn.cluster import KMeans
from tqdm import tqdm
from typing import Tuple, Optional
logger.remove()
logger.add(sys.stdout, level="INFO")
def get_common_colors(
img, colors=32, max_points=-1, N=3, colorspace="rgb", select_color="mean"
):
max_points = int(max_points)
img = np.array(img, dtype=np.uint8)
h, w = img.shape[0], img.shape[1]
img_orig_flat = img.reshape(h * w, 3)
if colorspace == "bgr":
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
elif colorspace == "hls":
img = cv2.cvtColor(img, cv2.COLOR_RGB2HLS)
elif colorspace == "hsv":
img = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
elif colorspace == "lab":
img = cv2.cvtColor(img, cv2.COLOR_RGB2LAB)
elif colorspace == "rgb":
img = img.copy()
else:
raise Exception("Unknown colorspace")
img_flat = img.copy().reshape(h * w, 3)
if max_points > 0 and max_points < img_flat.shape[0]:
idx = np.random.choice(np.arange(img_flat.shape[0]), max_points, replace=False)
kmeans = KMeans(n_clusters=colors, n_init="auto", random_state=0).fit(
img_flat[idx]
)
labels = kmeans.predict(img_flat)
else:
kmeans = KMeans(n_clusters=colors, n_init="auto", random_state=0).fit(img_flat)
labels = kmeans.labels_
unique_labels, counts = np.unique(labels, return_counts=True)
sorted_indices = np.argsort(counts)[::-1]
most_common_labels = unique_labels[sorted_indices[:N]]
# loops for cluster center
colors = []
for ci in np.unique(most_common_labels):
if select_color == "mean":
colors.append(img_orig_flat[labels == ci, :].mean(axis=0))
elif select_color == "median":
colors.append(np.median(img_orig_flat[labels == ci, :], axis=0))
else:
raise Exception("Unknown select_color")
return [c.astype(np.uint8) for c in colors]
def load_image(image_path):
return Image.open(image_path).convert("RGB")
def rgb_to_hls(rgb):
return colorsys.rgb_to_hls(*[x / 255.0 for x in rgb])
def hls_to_rgb(hls):
return tuple([int(x * 255) for x in colorsys.hls_to_rgb(*hls)])
def triadic_color_hls(rgb):
h, l, s = rgb_to_hls(rgb)
# s = max(0.7, s)
# FIXME: dirty hack for inverse black to white and back
# TODO: make some threshold that will define "dark" and "white" colors
# and inverse brightness for them
# v, s = s, v
l = 1.0 - l
h_triadic1 = (h + 1 / 3) % 1
h_triadic2 = (h + 2 / 3) % 1
return hls_to_rgb((h_triadic1, l, s)), hls_to_rgb((h_triadic2, l, s))
def opposite_color_hls(rgb):
h, l, s = rgb_to_hls(rgb)
l = 1.0 - l
h_opposite = (h + 1 / 2) % 1
return hls_to_rgb((h_opposite, l, s))
def get_random_page_content() -> str:
page_title = wikipedia.random(1)
try:
page_content = wikipedia.page(page_title).summary
except (wikipedia.DisambiguationError, wikipedia.PageError):
return get_random_page_content()
return page_content
def split_string(string, min_length, max_length):
substrings = []
start = 0
length = len(string)
for i in range(length // max_length):
substr = string[start : start + max_length]
start += max_length
substrings.append(substr)
if length - start > min_length:
substrings.append(string[start:])
return substrings
def create_strings_from_wikipedia(minimum_length, count, lang, max_length=-1):
"""
Create all string by randomly picking Wikipedia articles and taking sentences from them.
"""
wikipedia.set_lang(lang)
sentences = []
while len(sentences) < count:
page_content = get_random_page_content()
processed_content = page_content.replace("\n", " ").split(". ")
sentence_candidates = [
s.strip() for s in processed_content if len(s.split()) > minimum_length
]
for candidate in sentence_candidates:
strings = split_string(candidate, minimum_length, max_length)
if len(strings) > 0:
sentences.extend(strings)
# sentences.extend(sentence_candidates)
return sentences[0:count]
def create_strings_from_textfile(textfile_path, min_length, max_length, count=-1):
with open(textfile_path, "r") as f:
lines = f.readlines()
sentences = []
for line in lines:
if len(line) > min_length:
strings = split_string(line, min_length, max_length)
sentences.extend(strings)
if count > 0 and len(sentences) >= count:
break
return sentences[0:count]
class ResizeWithPad:
def __init__(
self, new_shape: Tuple[int, int], padding_color: Tuple[int] = (255, 255, 255)
) -> None:
self.new_shape = new_shape
self.padding_color = padding_color
def __call__(self, image: np.array, padding_color=None, **kwargs) -> np.array:
"""Maintains aspect ratio and resizes with padding.
Params:
image: Image to be resized.
new_shape: Expected (width, height) of new image.
padding_color: Tuple in BGR of padding color
Returns:
image: Resized image with padding
"""
if padding_color is None:
padding_color = self.padding_color
original_shape = (image.shape[1], image.shape[0])
ratio = float(max(self.new_shape)) / max(original_shape)
new_size = tuple([int(x * ratio) for x in original_shape])
image = cv2.resize(image, new_size)
delta_w = self.new_shape[0] - new_size[0]
delta_h = self.new_shape[1] - new_size[1]
top, bottom = delta_h // 2, delta_h - (delta_h // 2)
left, right = delta_w // 2, delta_w - (delta_w // 2)
image = cv2.copyMakeBorder(
image, top, bottom, left, right, cv2.BORDER_CONSTANT, value=padding_color
)
return image
class CutMax:
"""Cuts the image to the maximum size"""
def __init__(self, max_size: int = 1024) -> None:
self.max_size = max_size
def __call__(self, image: np.array, **kwargs) -> np.array:
"""Cuts the image to the maximum size"""
if image.shape[0] > self.max_size:
image = image[: self.max_size, :, :]
if image.shape[1] > self.max_size:
image = image[:, : self.max_size, :]
return image
class FontGenerator:
"""
Generate images with text and background
1. Init background images cache
2. Load fonts
3. Load backgrounds images list
4. Generate sample image
1. Generate text from wikipedia
2. Generate background image
1. Get random background image from cache or load new one
2. Random crop with random color padding
3. Convert to grayscale if needed
3. Or generate only color background
4. Select random font and font size
5. Adjust font color to contrast with background
6. Draw text on background
"""
def __init__(
self,
size=(256, 256),
min_length=5,
max_length=30,
backgrounds_path="backgrounds/",
fonts_path="fonts/",
background_ratio=0.8,
gray_color=False,
background_type=1,
background_cache_size=1000,
source="wikipedia",
textfile="text.txt",
debug=False,
):
"""
Generate images with text and background.
Parameters:
- size: Tuple[int, int] - The size of the generated images.
- min_length: int - The minimum length of the generated text.
- max_length: int - The maximum length of the generated text.
- backgrounds_path: str - The path to the directory containing background images.
- fonts_path: str - The path to the directory containing font files.
- background_ratio: float - The ratio of background images to be used.
- gray_color: bool - Whether to convert the background images to grayscale.
- background_type: int - The type of background to generate.
- background_cache_size: int - The size of the background images cache.
- source: str - The source of the text to generate.
- textfile_path: str - The path to the text file containing the text to generate.
Attributes:
- backgrounds: List[str] - The list of background image file paths.
- fonts: Dict[str, str] - The dictionary of font names and their corresponding file paths.
- fonts_cache: Dict[str, ImageFont] - The cache of loaded font objects.
- backgrounds_cache: Dict[str, Image] - The cache of loaded background images.
- text_cache: List[str] - The cache of generated text strings.
- resizer: ResizeWithPad - The image resizer object.
Methods:
- load_backgrounds(): Loads the background images from the specified directory.
- load_fonts(): Loads the font files from the specified directory.
- get_random_font(): Returns a random font object from the loaded fonts.
- generate_image(): Generates an image with text and background.
- get_font_color(): Calculates the font color to contrast with the background.
- generate_text(): Generates random text from the specified source.
- random_crop_with_padding(): Performs a random crop of the image with padding.
- get_random_background(): Returns a random background image from the cache or loads a new one.
Example usage:
generator = FontGenerator(size=(256, 256), min_length=5, max_length=30, backgrounds_path='backgrounds/', fonts_path='fonts/', background_ratio=0.8, gray_color=False, background_type=1, background_cache_size=1000, source='wikipedia', textfile_path='text.txt')
image = generator.generate_image(text='Hello World', font_size=32, font_color=(0, 0, 0), position='center', padding=10, background_image=True)
image.show()
"""
self.size = size
self.min_length = min_length
self.max_length = max_length
self.backgrounds_path = backgrounds_path
self.fonts_path = fonts_path
self.background_ratio = background_ratio
self.background_type = background_type
self.background_cache_size = background_cache_size
self.gray_color = gray_color
self.source = source
self.textfile_path = textfile
self.backgrounds = []
self.fonts = {}
self.fonts_cache = {}
self.blacklisted_fonts = []
self.debug = debug
# Init background images cache
self.load_backgrounds()
if not self.backgrounds:
raise FileNotFoundError(
f"No background images found under {self.backgrounds_path}"
)
self.load_blacklisted_fonts("blacklisted_fonts.txt")
self.load_fonts(self.fonts_path)
if not self.fonts:
raise FileNotFoundError(f"No fonts found under {self.fonts_path}")
self.resizer = ResizeWithPad(self.size, (255, 255, 255))
def load_backgrounds(self):
self.backgrounds = []
for file in os.listdir(self.backgrounds_path):
if file.endswith(".jpg") or file.endswith(".png") or file.endswith(".webp"):
self.backgrounds.append(os.path.join(self.backgrounds_path, file))
# Create a cache for background images
self.backgrounds_cache = {}
self.text_cache = []
def load_blacklisted_fonts(self, path: str):
# load blacklisted fonts
with open(path, "r") as f:
for line in f:
self.blacklisted_fonts.append(line.strip())
def load_fonts(self, path: str):
for root, dirs, files in os.walk(path):
for file in files:
if file.endswith(".ttf"):
if file in self.blacklisted_fonts:
continue
fontname = os.path.splitext(file)[0]
print(fontname, os.path.join(root, file))
self.fonts[fontname] = os.path.join(root, file)
def get_random_font(self):
font_name = random.choice(list(self.fonts.keys()))
font_path = self.fonts[font_name]
if font_name in self.fonts_cache:
font = self.fonts_cache[font_name]
else:
font = ImageFont.truetype(font_path, size=32)
self.fonts_cache[font_name] = font
return font, font_name
def generate_image(
self,
text,
font_size: int = 32,
font_color: Optional[Tuple[int, int, int]] = (0, 0, 0),
position: str = "center", # center, random
padding=10,
background_image: bool = False,
background_color: Optional[Tuple[int, int, int]] = None,
) -> Image:
logger.debug(f"Generating image with text: {text}")
# Generate image
if background_image:
image = self.get_random_background()
logger.debug(f"Background image with size: {image.size}")
colors = get_common_colors(np.array(image), colors=12, max_points=1e5, N=1)
logger.debug(f"Common colors: {colors}")
main_color = colors[0]
if font_color is None:
candidates = [
opposite_color_hls(main_color),
*triadic_color_hls(main_color),
]
font_color = random.choice(candidates)
logger.debug(f"Font color: {font_color}")
elif background_color is not None:
image = Image.new("RGB", self.size, background_color)
logger.debug(f"Background color: {background_color}")
else:
rand_color = (
random.randint(0, 255),
random.randint(0, 255),
random.randint(0, 255),
)
# Generate random color background
image = Image.new("RGB", self.size, rand_color)
logger.debug(f"Random color background: {rand_color}")
draw = ImageDraw.Draw(image)
# Select random font and font size
font, font_name = self.get_random_font()
font = font.font_variant(size=font_size)
if font_color is None:
# Adjust font color to contrast with background
font_color = self.get_font_color(image)
# Calculate position
bbox = font.getbbox(text)
text_w, text_h = bbox[2] - bbox[0], bbox[3] - bbox[1]
if position == "center":
x = (self.size[0] - text_w) / 2
y = (self.size[1] - text_h) / 2
elif position == "random":
# apply padding
x = random.randint(padding, max(padding, self.size[0] - text_w - padding))
y = random.randint(padding, max(padding, self.size[1] - text_h - padding))
else:
raise ValueError(f"Unknown position: {position}")
# Draw text
draw.text((x, y), text, fill=font_color, font=font)
return image, font_name, font_color
def get_font_color(self, image):
"""
Calculate font color to contrast with background
"""
pass
def generate_text(self):
"""
Generate random text from wikipedia
"""
if len(self.text_cache) == 0:
if self.source == "wikipedia":
# Load text from wikipedia
self.text_cache.extend(
create_strings_from_wikipedia(
self.min_length, 1000, "en", self.max_length
)
)
elif self.source == "textfile":
# Load text from text file
with open(self.textfile_path, "r") as f:
self.text_cache.extend(f.readlines())
if not self.text_cache:
raise ValueError(f"Text file {self.textfile_path} is empty.")
return self.text_cache.pop()
def random_crop_with_padding(self, image, pad_color=(255, 255, 255)):
"""
Random crop with padding
"""
assert image.size[0] >= self.size[0] and image.size[1] >= self.size[1]
x = random.randint(0, image.size[0] - self.size[0])
y = random.randint(0, image.size[1] - self.size[1])
image = image.crop((x, y, x + self.size[0], y + self.size[1]))
image = self.resizer(np.array(image), padding_color=pad_color)
image = Image.fromarray(image)
return image
def get_random_background(self, pad_color=(255, 255, 255)):
"""
Load background image from background cache
"""
# Get random background image
random_background = random.choice(self.backgrounds)
# Load image from cache
if random_background in self.backgrounds_cache:
background = self.backgrounds_cache[random_background]
else:
background = Image.open(random_background)
background = background.convert("RGB")
self.backgrounds_cache[random_background] = background
# Random crop with padding
background = self.random_crop_with_padding(background, pad_color)
# Apply color
if self.gray_color:
background = background.convert("L")
return background
def get_n_max_logits(arr: np.array, n: int):
"""
Get n max logits from array, return indices and values
"""
indices = np.argpartition(arr, -n)[-n:]
indices = indices[np.argsort(-arr[indices])]
values = arr[indices]
return indices, values
def parse_args():
parser = ArgumentParser()
parser.add_argument("N", type=int, help="Number of generated examples")
parser.add_argument(
"--min_length", type=int, default=5, help="Minimum length of generated text"
)
parser.add_argument(
"--max_length", type=int, default=30, help="Maximum length of generated text"
)
parser.add_argument("--batch_size", type=int, default=200, help="Batch size")
parser.add_argument(
"--max_fonts", type=int, default=3000, help="Maximum number of fonts to use"
)
parser.add_argument(
"--output", type=str, default="sample_data/output", help="Output folder"
)
parser.add_argument(
"--backgrounds",
type=str,
default="sample_data/backgrounds/",
help="Path for background images, supports JPG, PNG",
)
parser.add_argument(
"--fonts",
type=str,
default="sample_data/fonts/",
help="Path to folder with fonts in TTF format",
)
parser.add_argument(
"--font_size_min", type=int, default=16, help="Minimum font size"
)
parser.add_argument(
"--font_size_max", type=int, default=96, help="Maximum font size"
)
parser.add_argument(
"--background_ratio",
type=float,
default=0.8,
help="Ratio between results with background image and white color",
)
parser.add_argument(
"--contrast_color_ratio",
type=float,
default=0.5,
help="Ratio between results with contrast color and black color",
)
parser.add_argument(
"--text_source",
type=str,
default="wikipedia",
help="Text source: wikipedia, textfile",
)
parser.add_argument(
"--textfile",
type=str,
default="sample_data/textfile.txt",
help="Path to text file with sentences dataset",
)
parser.add_argument("--debug", action="store_true", help="Debug mode")
args = parser.parse_args()
return args
def main(args):
# Create output folder
os.makedirs(args.output, exist_ok=True)
# Enable debug logger level if debug mode is on
if args.debug:
logger.add(sys.stdout, level="DEBUG")
# Init font generator
font_generator = FontGenerator(
size=(256, 256),
min_length=args.min_length,
max_length=args.max_length,
backgrounds_path=args.backgrounds,
fonts_path=args.fonts,
background_ratio=args.background_ratio,
source=args.text_source,
textfile=args.textfile,
)
# Generate images
for i in tqdm(range(args.N)):
try:
text = font_generator.generate_text()
if np.random.rand() < args.contrast_color_ratio:
font_color = None
else:
font_color = (0, 0, 0)
font_size = random.randint(args.font_size_min, args.font_size_max)
if random.random() < args.background_ratio:
background_image = True
background_color = None
else:
background_image = False
background_color = tuple(np.random.randint(0, 256, 3))
# Generate image
image, font_name, font_color = font_generator.generate_image(
text,
position="random",
background_image=background_image,
font_size=font_size,
padding=10,
font_color=font_color,
background_color=background_color,
)
# Save image
(Path(args.output) / font_name).mkdir(exist_ok=True)
image.save(os.path.join(args.output, font_name, f"{i}.jpg"))
except Exception as e:
print(f"Error while generating image {i}: {e}")
traceback.print_exc()
continue
if __name__ == "__main__":
args = parse_args()
main(args)