-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
234 lines (192 loc) · 8.48 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
from __future__ import print_function
import argparse
import utils
import dataset
import models.crnn as crnn
import chainer
import chainer.links as L
import chainer.functions as F
from chainer import serializers, Variable, training
from chainer.training import extensions
import six
import numpy as np
from chainer.dataset import iterator as itr_module
from chainer import reporter
from chainer import function
def arg():
parser = argparse.ArgumentParser()
parser.add_argument('--train', default='dataset/90kDICT32px/1ktrain.txt',
type=str, help='path to train file.')
parser.add_argument('--test', default='dataset/90kDICT32px/1ktest.txt',
type=str, help='path to test file.')
parser.add_argument('--workers', type=int, default=2,
help='number of data loading workers')
parser.add_argument('--frequency', type=int, default=-1,
help='Frequency of taking a snapshot')
parser.add_argument('--batchsize', '-b',type=int, default=64,
help='input batch size')
parser.add_argument('--lexicon', default='dataset/90kDICT32px/lexicon.txt',
type=str, help='path to lexicon file.')
parser.add_argument('--imgH', type=int, default=32,
help='the height of the input image to network')
parser.add_argument('--imgW', type=int, default=100,
help='the width of the input image to network')
parser.add_argument('--nh', type=int, default=256,
help='size of the lstm hidden state')
parser.add_argument('--epoch', '-e', type=int, default=25,
help='number of epochs to train for')
parser.add_argument('--lr', type=float, default=0.01,
help='learning rate for Critic, default=0.00005')
parser.add_argument('--beta1', type=float, default=0.5,
help='beta1 for adam. default=0.5')
parser.add_argument('--cuda', action='store_true',
help='enables cuda')
parser.add_argument('--gpu', type=int, default=-1,
help='number of GPUs to use')
parser.add_argument('--crnn', default='',
help="path to crnn (to continue training)")
parser.add_argument('--alphabet', type=str,
default='0123456789abcdefghijklmnopqrstuvwxyz')
parser.add_argument('--out', '-o', default='result', type=str,
help='Where to store samples and models')
parser.add_argument('--displayInterval', type=int, default=500,
help='Interval to be displayed')
parser.add_argument('--n_test_disp', type=int, default=10,
help='Number of samples to display when test')
parser.add_argument('--valInterval', type=int, default=500,
help='Interval to be displayed')
parser.add_argument('--saveInterval', type=int, default=500,
help='Interval to be displayed')
parser.add_argument('--adam', action='store_true',
help='Whether to use adam (default is rmsprop)')
parser.add_argument('--adadelta', action='store_true',
help='Whether to use adadelta (default is rmsprop)')
parser.add_argument('--keep_ratio', action='store_true',
help='whether to keep ratio for image resize')
opt = parser.parse_args()
print(opt)
return opt
class CRNNUpdater(training.StandardUpdater):
def __init__(self, iterator, optimizer, converter,
device=None):
if isinstance(iterator, itr_module.Iterator):
iterator = {'main': iterator}
self._iterators = iterator
if not isinstance(optimizer, dict):
optimizer = {'main': optimizer}
self._optimizers = optimizer
if device is not None and device >= 0:
for optimizer in six.itervalues(self._optimizers):
optimizer.target.to_gpu(device)
self.converter = converter
self.loss_func = F.connectionist_temporal_classification
self.device = device
self.iteration = 0
def update_core(self):
batch = self._iterators['main'].next()
in_arrays = self.converter(batch, self.device)
xs, ts = in_arrays
optimizer = self._optimizers['main']
xp = optimizer.target.xp
loss_func = self.loss_func or optimizer.target
x = Variable(xp.asarray(xs, dtype=xp.float32)) # (64, 1, 32, 100)
y = optimizer.target(x) # (26, 64, 37)
padded_ts = xp.zeros((len(ts), max([len(t) for t in ts])))
for index, item in enumerate(ts):
padded_ts[index, :item.shape[0]] = item
loss = loss_func([item for item in y],
xp.asarray(padded_ts).astype(xp.int32),
0,
xp.full((len(ts),), 26, dtype=xp.int32),
xp.asarray([len(t) for t in ts]).astype(xp.int32))
optimizer.target.cleargrads()
loss.backward()
loss.unchain_backward()
optimizer.update()
reporter.report({'loss': loss}, self._optimizers['main'].target)
class CRNN_Evaluator(extensions.Evaluator):
def __init__(self, iterator, model, converter, device=None,
eval_hook=None):
if isinstance(iterator, itr_module.Iterator):
iterator = {'main': iterator}
self._iterators = iterator
self._targets = {'main': model}
if device is not None and device >= 0:
for target in six.itervalues(self._targets):
target.to_gpu(device)
self.converter = converter
self.loss_func = F.connectionist_temporal_classification
self.device = device
self.iteration = 0
self.eval_hook = eval_hook
def evaluate(self):
iterator = self._iterators['main']
eval_func = self.loss_func
model = self._targets['main']
if self.eval_hook:
self.eval_hook(self)
if hasattr(iterator, 'reset'):
iterator.reset()
it = iterator
else:
it = copy.copy(iterator)
summary = reporter.DictSummary()
for batch in it:
observation = {}
with reporter.report_scope(observation):
in_arrays = self.converter(batch, self.device)
xs, ts = in_arrays
xp = model.xp
loss_func = self.loss_func
x = Variable(xp.asarray(xs, dtype=xp.float32)) # (64, 1, 32, 100)
y = model(x) # (26, 64, 37)
padded_ts = xp.zeros((len(ts), max([len(t) for t in ts])))
for index, item in enumerate(ts):
padded_ts[index, :item.shape[0]] = item
with function.no_backprop_mode():
loss = eval_func([item for item in y],
xp.asarray(padded_ts).astype(xp.int32),
0,
xp.full((len(ts),), 26, dtype=xp.int32),
xp.asarray([len(t) for t in ts]).astype(xp.int32))
observation['validation/main/loss'] = loss
summary.add(observation)
return summary.compute_mean()
def main():
args = arg()
nc = 1
nclass = len(args.alphabet) + 1
model = crnn.CRNN(args.imgH, nc, nclass, args.nh)
if args.gpu >= 0:
chainer.cuda.get_device(args.gpu).use()
model.to_gpu()
# Setup an optimizer
optimizer = chainer.optimizers.Adam()
optimizer.setup(model)
train = dataset.TextImageDataset(
pairs_path=args.train,
lexicon=args.lexicon)
test = dataset.TextImageDataset(
pairs_path=args.test,
lexicon=args.lexicon)
train_iter = chainer.iterators.SerialIterator(train, args.batchsize)
test_iter = chainer.iterators.SerialIterator(test, args.batchsize,
repeat=False, shuffle=False)
convert = utils.AlignConverter(alphabet=args.alphabet, imgH=args.imgH, imgW=args.imgW)
# Set up a trainer
updater = CRNNUpdater(
train_iter, optimizer, converter=convert, device=args.gpu)
trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)
# Evaluate the model with the test dataset for each epoch
trainer.extend(CRNN_Evaluator(test_iter, model, converter=convert, device=args.gpu))
# Take a snapshot for each specified epoch
frequency = args.epoch if args.frequency == -1 else max(1, args.frequency)
trainer.extend(extensions.snapshot(), trigger=(frequency, 'epoch'))
trainer.extend(extensions.LogReport())
trainer.extend(extensions.PrintReport(
['epoch', 'main/loss', 'validation/main/loss', 'elapsed_time']
))
trainer.extend(extensions.ProgressBar())
trainer.run()
if __name__ == '__main__':
main()