forked from nmap/nmap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscan_engine_connect.cc
584 lines (552 loc) · 24.8 KB
/
scan_engine_connect.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
/***************************************************************************
* scan_engine_connect.cc -- includes helper functions for scan_engine.cc *
* that are related to port scanning using connect() system call. *
* *
***********************IMPORTANT NMAP LICENSE TERMS************************
* *
* The Nmap Security Scanner is (C) 1996-2019 Insecure.Com LLC ("The Nmap *
* Project"). Nmap is also a registered trademark of the Nmap Project. *
* This program is free software; you may redistribute and/or modify it *
* under the terms of the GNU General Public License as published by the *
* Free Software Foundation; Version 2 ("GPL"), BUT ONLY WITH ALL OF THE *
* CLARIFICATIONS AND EXCEPTIONS DESCRIBED HEREIN. This guarantees your *
* right to use, modify, and redistribute this software under certain *
* conditions. If you wish to embed Nmap technology into proprietary *
* software, we sell alternative licenses (contact [email protected]). *
* Dozens of software vendors already license Nmap technology such as *
* host discovery, port scanning, OS detection, version detection, and *
* the Nmap Scripting Engine. *
* *
* Note that the GPL places important restrictions on "derivative works", *
* yet it does not provide a detailed definition of that term. To avoid *
* misunderstandings, we interpret that term as broadly as copyright law *
* allows. For example, we consider an application to constitute a *
* derivative work for the purpose of this license if it does any of the *
* following with any software or content covered by this license *
* ("Covered Software"): *
* *
* o Integrates source code from Covered Software. *
* *
* o Reads or includes copyrighted data files, such as Nmap's nmap-os-db *
* or nmap-service-probes. *
* *
* o Is designed specifically to execute Covered Software and parse the *
* results (as opposed to typical shell or execution-menu apps, which will *
* execute anything you tell them to). *
* *
* o Includes Covered Software in a proprietary executable installer. The *
* installers produced by InstallShield are an example of this. Including *
* Nmap with other software in compressed or archival form does not *
* trigger this provision, provided appropriate open source decompression *
* or de-archiving software is widely available for no charge. For the *
* purposes of this license, an installer is considered to include Covered *
* Software even if it actually retrieves a copy of Covered Software from *
* another source during runtime (such as by downloading it from the *
* Internet). *
* *
* o Links (statically or dynamically) to a library which does any of the *
* above. *
* *
* o Executes a helper program, module, or script to do any of the above. *
* *
* This list is not exclusive, but is meant to clarify our interpretation *
* of derived works with some common examples. Other people may interpret *
* the plain GPL differently, so we consider this a special exception to *
* the GPL that we apply to Covered Software. Works which meet any of *
* these conditions must conform to all of the terms of this license, *
* particularly including the GPL Section 3 requirements of providing *
* source code and allowing free redistribution of the work as a whole. *
* *
* As another special exception to the GPL terms, the Nmap Project grants *
* permission to link the code of this program with any version of the *
* OpenSSL library which is distributed under a license identical to that *
* listed in the included docs/licenses/OpenSSL.txt file, and distribute *
* linked combinations including the two. *
* *
* The Nmap Project has permission to redistribute Npcap, a packet *
* capturing driver and library for the Microsoft Windows platform. *
* Npcap is a separate work with it's own license rather than this Nmap *
* license. Since the Npcap license does not permit redistribution *
* without special permission, our Nmap Windows binary packages which *
* contain Npcap may not be redistributed without special permission. *
* *
* Any redistribution of Covered Software, including any derived works, *
* must obey and carry forward all of the terms of this license, including *
* obeying all GPL rules and restrictions. For example, source code of *
* the whole work must be provided and free redistribution must be *
* allowed. All GPL references to "this License", are to be treated as *
* including the terms and conditions of this license text as well. *
* *
* Because this license imposes special exceptions to the GPL, Covered *
* Work may not be combined (even as part of a larger work) with plain GPL *
* software. The terms, conditions, and exceptions of this license must *
* be included as well. This license is incompatible with some other open *
* source licenses as well. In some cases we can relicense portions of *
* Nmap or grant special permissions to use it in other open source *
* software. Please contact [email protected] with any such requests. *
* Similarly, we don't incorporate incompatible open source software into *
* Covered Software without special permission from the copyright holders. *
* *
* If you have any questions about the licensing restrictions on using *
* Nmap in other works, we are happy to help. As mentioned above, we also *
* offer an alternative license to integrate Nmap into proprietary *
* applications and appliances. These contracts have been sold to dozens *
* of software vendors, and generally include a perpetual license as well *
* as providing support and updates. They also fund the continued *
* development of Nmap. Please email [email protected] for further *
* information. *
* *
* If you have received a written license agreement or contract for *
* Covered Software stating terms other than these, you may choose to use *
* and redistribute Covered Software under those terms instead of these. *
* *
* Source is provided to this software because we believe users have a *
* right to know exactly what a program is going to do before they run it. *
* This also allows you to audit the software for security holes. *
* *
* Source code also allows you to port Nmap to new platforms, fix bugs, *
* and add new features. You are highly encouraged to send your changes *
* to the [email protected] mailing list for possible incorporation into the *
* main distribution. By sending these changes to Fyodor or one of the *
* Insecure.Org development mailing lists, or checking them into the Nmap *
* source code repository, it is understood (unless you specify *
* otherwise) that you are offering the Nmap Project the unlimited, *
* non-exclusive right to reuse, modify, and relicense the code. Nmap *
* will always be available Open Source, but this is important because *
* the inability to relicense code has caused devastating problems for *
* other Free Software projects (such as KDE and NASM). We also *
* occasionally relicense the code to third parties as discussed above. *
* If you wish to specify special license conditions of your *
* contributions, just say so when you send them. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Nmap *
* license file for more details (it's in a COPYING file included with *
* Nmap, and also available from https://svn.nmap.org/nmap/COPYING) *
* *
***************************************************************************/
/* $Id$ */
#include "nmap_error.h"
#include "tcpip.h"
#include "Target.h"
#include "scan_engine.h"
#include "scan_engine_connect.h"
#include "libnetutil/netutil.h" /* for max_sd() */
#include "NmapOps.h"
#include <errno.h>
extern NmapOps o;
/* Sets this UltraProbe as type UP_CONNECT, preparing to connect to given
port number*/
void UltraProbe::setConnect(u16 portno) {
type = UP_CONNECT;
probes.CP = new ConnectProbe();
mypspec.type = PS_CONNECTTCP;
mypspec.proto = IPPROTO_TCP;
mypspec.pd.tcp.dport = portno;
mypspec.pd.tcp.flags = TH_SYN;
}
ConnectScanInfo::ConnectScanInfo() {
maxValidSD = -1;
numSDs = 0;
if (o.max_parallelism > 0) {
maxSocketsAllowed = o.max_parallelism;
} else {
/* Subtracting 10 from max_sd accounts for
stdin
stdout
stderr
/dev/tty
/var/run/utmpx, which is opened on Mac OS X at least
-oG log file
-oN log file
-oS log file
-oX log file
perhaps another we've forgotten. */
maxSocketsAllowed = max_sd() - 10;
if (maxSocketsAllowed < 5)
maxSocketsAllowed = 5;
}
maxSocketsAllowed = MIN(maxSocketsAllowed, FD_SETSIZE - 10);
FD_ZERO(&fds_read);
FD_ZERO(&fds_write);
FD_ZERO(&fds_except);
}
/* Nothing really to do here. */
ConnectScanInfo::~ConnectScanInfo() {}
/* Watch a socket descriptor (add to fd_sets and maxValidSD). Returns
true if the SD was absent from the list, false if you tried to
watch an SD that was already being watched. */
bool ConnectScanInfo::watchSD(int sd) {
assert(sd >= 0);
if (!checked_fd_isset(sd, &fds_read)) {
checked_fd_set(sd, &fds_read);
checked_fd_set(sd, &fds_write);
checked_fd_set(sd, &fds_except);
numSDs++;
if (sd > maxValidSD)
maxValidSD = sd;
return true;
} else {
return false;
}
}
/* Clear SD from the fd_sets and maxValidSD. Returns true if the SD
was in the list, false if you tried to clear an sd that wasn't
there in the first place. */
bool ConnectScanInfo::clearSD(int sd) {
assert(sd >= 0);
if (checked_fd_isset(sd, &fds_read)) {
checked_fd_clr(sd, &fds_read);
checked_fd_clr(sd, &fds_write);
checked_fd_clr(sd, &fds_except);
assert(numSDs > 0);
numSDs--;
if (sd == maxValidSD)
maxValidSD--;
return true;
} else {
return false;
}
}
ConnectProbe::ConnectProbe() {
sd = -1;
}
ConnectProbe::~ConnectProbe() {
if (sd > 0)
close(sd);
sd = -1;
}
static void handleConnectResult(UltraScanInfo *USI, HostScanStats *hss,
std::list<UltraProbe *>::iterator probeI,
int connect_errno,
bool destroy_probe=false) {
bool adjust_timing = true;
int newportstate = PORT_UNKNOWN;
int newhoststate = HOST_UNKNOWN;
reason_t current_reason = ER_NORESPONSE;
UltraProbe *probe = *probeI;
struct sockaddr_storage local;
socklen_t local_len = sizeof(struct sockaddr_storage);
struct sockaddr_storage remote;
size_t remote_len;
if (hss->target->TargetSockAddr(&remote, &remote_len) != 0) {
fatal("Failed to get target socket address in %s", __func__);
}
if (remote.ss_family == AF_INET)
((struct sockaddr_in *) &remote)->sin_port = htons(probe->dport());
#if HAVE_IPV6
else
((struct sockaddr_in6 *) &remote)->sin6_port = htons(probe->dport());
#endif
PacketTrace::traceConnect(IPPROTO_TCP, (sockaddr *) &remote, remote_len,
connect_errno, connect_errno, &USI->now);
switch (connect_errno) {
case 0:
newhoststate = HOST_UP;
newportstate = PORT_OPEN;
current_reason = ER_CONACCEPT;
break;
case EACCES:
/* Apparently this can be caused by dest unreachable admin
prohibited messages sent back, at least from IPv6
hosts */
newhoststate = HOST_DOWN;
newportstate = PORT_FILTERED;
current_reason = ER_ADMINPROHIBITED;
break;
/* This can happen on localhost, successful/failing connection immediately
in non-blocking mode. */
case ECONNREFUSED:
newhoststate = HOST_UP;
newportstate = PORT_CLOSED;
current_reason = ER_CONREFUSED;
break;
case EAGAIN:
log_write(LOG_STDOUT, "Machine %s MIGHT actually be listening on probe port %d\n", hss->target->targetipstr(), USI->ports->syn_ping_ports[probe->dport()]);
/* Fall through. */
#ifdef WIN32
case WSAENOTCONN:
#endif
newhoststate = HOST_UP;
current_reason = ER_CONACCEPT;
break;
#ifdef ENOPROTOOPT
case ENOPROTOOPT:
newhoststate = HOST_DOWN;
newportstate = PORT_FILTERED;
current_reason = ER_PROTOUNREACH;
break;
#endif
case EHOSTUNREACH:
newhoststate = HOST_DOWN;
newportstate = PORT_FILTERED;
current_reason = ER_HOSTUNREACH;
break;
#ifdef WIN32
case WSAEADDRNOTAVAIL:
#endif
case ETIMEDOUT:
case EHOSTDOWN:
newhoststate = HOST_DOWN;
/* It could be the host is down, or it could be firewalled. We
will go on the safe side & assume port is closed ... on second
thought, lets go firewalled! and see if it causes any trouble */
newportstate = PORT_FILTERED;
current_reason = ER_NORESPONSE;
break;
case ENETUNREACH:
newhoststate = HOST_DOWN;
newportstate = PORT_FILTERED;
current_reason = ER_NETUNREACH;
break;
#ifdef ENONET
case ENONET:
/* For Linux at least, this means ICMP type 3 code 8, source host isolated */
newhoststate = HOST_DOWN;
newportstate = PORT_FILTERED;
current_reason = ER_DESTUNREACH;
break;
#endif
case ENETDOWN:
case ENETRESET:
case ECONNABORTED:
fatal("Strange SO_ERROR from connection to %s (%d - '%s') -- bailing scan", hss->target->targetipstr(), connect_errno, strerror(connect_errno));
break;
default:
error("Strange read error from %s (%d - '%s')", hss->target->targetipstr(), connect_errno, strerror(connect_errno));
break;
}
if (probe->isPing() && newhoststate != HOST_UNKNOWN ) {
ultrascan_ping_update(USI, hss, probeI, &USI->now, adjust_timing);
} else if (USI->ping_scan && newhoststate != HOST_UNKNOWN) {
ultrascan_host_probe_update(USI, hss, probeI, newhoststate, &USI->now, adjust_timing);
hss->target->reason.reason_id = current_reason;
/* If the host is up, we can forget our other probes. */
if (newhoststate == HOST_UP)
hss->destroyAllOutstandingProbes();
} else if (!USI->ping_scan && newportstate != PORT_UNKNOWN) {
/* Save these values so we can use them after
ultrascan_port_probe_update deletes probe. */
u8 protocol = probe->protocol();
u16 dport = probe->dport();
/* getsockname can fail on AIX when socket is closed
* and we only care about self-connects for open ports anyway
*/
if (newportstate == PORT_OPEN) {
/* Check for self-connected probe */
if (getsockname(probe->CP()->sd, (struct sockaddr*)&local, &local_len) == 0) {
if (sockaddr_storage_cmp(&local, &remote) == 0 && (
(local.ss_family == AF_INET &&
((struct sockaddr_in*)&local)->sin_port == htons(dport))
#if HAVE_IPV6
|| (local.ss_family == AF_INET6 &&
((struct sockaddr_in6*)&local)->sin6_port == htons(dport))
#endif
)) {
if (o.debugging) {
log_write(LOG_STDOUT, "Detected likely self-connect on port %d\n", probe->dport());
}
/* It's not really timed out, but this is a simple way to retry the
* probe. It shouldn't affect timing too much, since this is quite
* rare (should average one per scan, for localhost -p 0-65535 scans
* only) */
hss->markProbeTimedout(probeI);
}
else {
ultrascan_port_probe_update(USI, hss, probeI, newportstate, &USI->now, adjust_timing);
hss->target->ports.setStateReason(dport, protocol, current_reason, 0, NULL);
}
}
else {
gh_perror("getsockname or TargetSockAddr failed");
}
}
else {
ultrascan_port_probe_update(USI, hss, probeI, newportstate, &USI->now, adjust_timing);
hss->target->ports.setStateReason(dport, protocol, current_reason, 0, NULL);
}
} else if (destroy_probe) {
hss->destroyOutstandingProbe(probeI);
}
return;
}
/* Set the socket lingering so we will RST connections instead of wasting
bandwidth with the four-step close. Set the source address if needed. Bind to
a specific interface if needed. */
static void init_socket(int sd) {
static int bind_failed = 0;
struct linger l;
struct sockaddr_storage ss;
size_t sslen;
l.l_onoff = 1;
l.l_linger = 0;
if (setsockopt(sd, SOL_SOCKET, SO_LINGER, (const char *) &l, sizeof(l)) != 0) {
error("Problem setting socket SO_LINGER, errno: %d", socket_errno());
perror("setsockopt");
}
if (o.spoofsource && !bind_failed) {
o.SourceSockAddr(&ss, &sslen);
if (::bind(sd, (struct sockaddr*)&ss, sslen) != 0) {
error("%s: Problem binding source address (%s), errno: %d", __func__, inet_socktop(&ss), socket_errno());
perror("bind");
bind_failed = 1;
}
}
errno = 0;
if (!socket_bindtodevice(sd, o.device)) {
/* EPERM is expected when not running as root. */
if (errno != EPERM) {
error("Problem binding to interface %s, errno: %d", o.device, socket_errno());
perror("socket_bindtodevice");
}
}
}
/* If this is NOT a ping probe, set pingseq to 0. Otherwise it will be the
ping sequence number (they start at 1). The probe sent is returned. */
UltraProbe *sendConnectScanProbe(UltraScanInfo *USI, HostScanStats *hss,
u16 destport, u8 tryno, u8 pingseq) {
UltraProbe *probe = new UltraProbe();
std::list<UltraProbe *>::iterator probeI;
int rc;
int connect_errno = 0;
struct sockaddr_storage sock;
struct sockaddr_in *sin = (struct sockaddr_in *) &sock;
#if HAVE_IPV6
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) &sock;
#endif
size_t socklen;
ConnectProbe *CP;
probe->tryno = tryno;
probe->pingseq = pingseq;
/* First build the probe */
probe->setConnect(destport);
CP = probe->CP();
/* Initiate the connection */
CP->sd = socket(o.af(), SOCK_STREAM, IPPROTO_TCP);
if (CP->sd == -1)
pfatal("Socket creation in %s", __func__);
unblock_socket(CP->sd);
init_socket(CP->sd);
set_ttl(CP->sd, o.ttl);
if (o.ipoptionslen)
set_ipoptions(CP->sd, o.ipoptions, o.ipoptionslen);
if (hss->target->TargetSockAddr(&sock, &socklen) != 0) {
fatal("Failed to get target socket address in %s", __func__);
}
if (sin->sin_family == AF_INET)
sin->sin_port = htons(probe->pspec()->pd.tcp.dport);
#if HAVE_IPV6
else sin6->sin6_port = htons(probe->pspec()->pd.tcp.dport);
#endif
probe->sent = USI->now;
/* We don't record a byte count for connect probes. */
hss->probeSent(0);
rc = connect(CP->sd, (struct sockaddr *)&sock, socklen);
gettimeofday(&USI->now, NULL);
if (rc == -1)
connect_errno = socket_errno();
/* This counts as probe being sent, so update structures */
hss->probes_outstanding.push_back(probe);
probeI = hss->probes_outstanding.end();
probeI--;
USI->gstats->num_probes_active++;
hss->num_probes_active++;
/* It would be convenient if the connect() call would never succeed
or permanently fail here, so related code cood all be localized
elsewhere. But the reality is that connect() MAY be finished now. */
if (rc == -1 && (connect_errno == EINPROGRESS || connect_errno == EAGAIN)) {
PacketTrace::traceConnect(IPPROTO_TCP, (sockaddr *) &sock, socklen, rc,
connect_errno, &USI->now);
USI->gstats->CSI->watchSD(CP->sd);
} else {
handleConnectResult(USI, hss, probeI, connect_errno, true);
probe = NULL;
}
gettimeofday(&USI->now, NULL);
return probe;
}
/* Does a select() call and handles all of the results. This handles both host
discovery (ping) scans and port scans. Even if stime is now, it tries a very
quick select() just in case. Returns true if at least one good result
(generally a port state change) is found, false if it times out instead */
bool do_one_select_round(UltraScanInfo *USI, struct timeval *stime) {
fd_set fds_rtmp, fds_wtmp, fds_xtmp;
int selectres;
struct timeval timeout;
int timeleft;
ConnectScanInfo *CSI = USI->gstats->CSI;
int sd;
std::multiset<HostScanStats *, HssPredicate>::iterator hostI;
HostScanStats *host;
UltraProbe *probe = NULL;
int optval;
recvfrom6_t optlen = sizeof(int);
int numGoodSD = 0;
int err = 0;
do {
timeleft = TIMEVAL_MSEC_SUBTRACT(*stime, USI->now);
if (timeleft < 0)
timeleft = 0;
fds_rtmp = USI->gstats->CSI->fds_read;
fds_wtmp = USI->gstats->CSI->fds_write;
fds_xtmp = USI->gstats->CSI->fds_except;
timeout.tv_sec = timeleft / 1000;
timeout.tv_usec = (timeleft % 1000) * 1000;
if (CSI->numSDs) {
selectres = select(CSI->maxValidSD + 1, &fds_rtmp, &fds_wtmp,
&fds_xtmp, &timeout);
err = socket_errno();
} else {
/* Apparently Windows returns an WSAEINVAL if you select without watching any SDs. Lame. We'll usleep instead in that case */
usleep(timeleft * 1000);
selectres = 0;
}
} while (selectres == -1 && err == EINTR);
gettimeofday(&USI->now, NULL);
if (selectres == -1)
pfatal("select failed in %s()", __func__);
if (!selectres)
return false;
/* Yay! Got at least one response back -- loop through outstanding probes
and find the relevant ones. Note the peculiar structure of the loop--we
iterate through both incompleteHosts and completedHosts, because global
timing pings are sent to hosts in completedHosts. */
std::multiset<HostScanStats *, HssPredicate>::iterator incompleteHostI, completedHostI;
incompleteHostI = USI->incompleteHosts.begin();
completedHostI = USI->completedHosts.begin();
while ((incompleteHostI != USI->incompleteHosts.end()
|| completedHostI != USI->completedHosts.end())
&& numGoodSD < selectres) {
if (incompleteHostI != USI->incompleteHosts.end())
hostI = incompleteHostI++;
else
hostI = completedHostI++;
host = *hostI;
if (host->num_probes_active == 0)
continue;
std::list<UltraProbe *>::iterator nextProbeI;
for (std::list<UltraProbe *>::iterator probeI = host->probes_outstanding.begin();
probeI != host->probes_outstanding.end() && numGoodSD < selectres && host->num_probes_outstanding() > 0; probeI = nextProbeI) {
/* handleConnectResult may remove the probe at probeI, which invalidates
* the iterator. We copy and increment it here instead of in the for-loop
* statement to avoid incrementing an invalid iterator */
nextProbeI = probeI;
nextProbeI++;
probe = *probeI;
assert(probe->type == UltraProbe::UP_CONNECT);
sd = probe->CP()->sd;
/* Let see if anything has happened! */
if (sd >= 0 && (checked_fd_isset(sd, &fds_rtmp) ||
checked_fd_isset(sd, &fds_wtmp) ||
checked_fd_isset(sd, &fds_xtmp))) {
numGoodSD++;
if (getsockopt(sd, SOL_SOCKET, SO_ERROR, (char *) &optval,
&optlen) != 0)
optval = socket_errno(); /* Stupid Solaris ... */
handleConnectResult(USI, host, probeI, optval);
}
}
}
return numGoodSD;
}