-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
153 lines (118 loc) · 5.14 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
""" Neuroevolutionary Investor
Work in progress.
@Author Gabriel Nogueira (Talendar)
"""
import os
from datetime import datetime
from pathlib import Path
import pandas as pd
from investor import InvestorPopulation
from evaluate import *
def format_csv():
""" Auxiliary function used to format the raw IBOVESPA data. """
ibov = pd.read_csv("./data/ibov_dados_originais.csv", index_col=None, usecols=["Data", "Último", "Abertura"])
ibov = ibov[::-1].reset_index(drop=True)
for i, row in ibov.iterrows():
row["Último"] = row["Último"].replace(".", "").replace(",", ".")
row["Abertura"] = row["Abertura"].replace(".", "").replace(",", ".")
ibov.to_csv("./data/ibov_dados.csv", index=False)
def train():
""" Handles the training of an investor population (menu option 0). """
# input
print("\n\nInput file (csv at ./data): ", end="")
in_file = input()
ibov = pd.read_csv("./data/" + in_file, index_col=None, usecols=["Data", "Último", "Abertura"])
print("Training days (start, end): ", end="")
start_day, end_day = [int(x) for x in input().split(" ")]
print("Population size: ", end="")
pop_size = int(input())
print("Initial cash: ", end="")
initial_cash = float(input())
print("Number of previous days to consider: ", end="")
prev_days = int(input())
print("Number of training generations: ", end="")
gens = int(input())
# training
pop = InvestorPopulation(pop_size=pop_size, initial_cash=initial_cash, prev_days=prev_days)
pop.evolve(generations=gens, prices=ibov["Último"][start_day:end_day].values / 1000)
# saving results
out_dir = "./out/" + f"{datetime.now():%y-%m-%d-%H-%M-%S}" + "_day%dto%d/" % (start_day, end_day)
if not os.path.isdir(out_dir):
Path(out_dir).mkdir()
pop.save(out_dir)
print("\nResults saved to: %s" % out_dir)
def evaluate():
""" Handles the evaluation of a trained investors population (menu option 1). """
# base input
print("\n\nIBOVESPA data file (csv at ./data): ", end="")
in_file = input()
ibov = pd.read_csv("./data/" + in_file, index_col=None, usecols=["Data", "Último", "Abertura"])
print("Population directory path (e.g: ./out/my_pop/): ", end="")
in_dir = input()
pop = InvestorPopulation(in_dir=in_dir)
print("Considered days (start, end): ", end="")
start_day, end_day = [int(x) for x in input().split(" ")]
if (end_day - start_day) < (pop.prev_days + 1):
print("Not enough days! This population needs at least %d previous days of data." % pop.prev_days)
return
# evaluating
print("\nStarting date (day 0): %s | Pts: %.2f" %
(ibov["Data"].iloc[start_day + pop.prev_days], ibov["Último"].iloc[start_day + pop.prev_days]))
print("Ending date (day %d): %s | Pts: %.2f" % (end_day - start_day - 1, ibov["Data"].iloc[end_day - 1],
ibov["Último"].iloc[end_day - 1]))
print("Evaluating... ", end="")
investors_history, ibov_var = pop.evaluate(ibov["Último"][start_day:end_day].values / 1000)
print("done!")
# plotting
plt_opt = -1
while plt_opt != 2:
print(
"\n\n> Plot Population Evolution\n"
" [0] Static plot\n"
" [1] Dynamic plot\n"
" [2] Leave\n"
"Option: ", end=""
)
plt_opt = int(input())
# static plot
if plt_opt == 0:
print("\nNumber of investors to plot (min 1, max %d): " % pop.size(), end="")
num_plot = int(input())
if num_plot <= 0 or num_plot > pop.size():
print("Error: invalid population size!")
else:
static_plot(investors_history[:num_plot], ibov_var)
# dynamic plot
elif plt_opt == 1:
print("\nInvestor to plot (%d is the best and %d is the worst): " % (1, pop.size()), end="")
inv_num = int(input())
print("Plot investor's decisions (y or n): ", end="")
print_ops = (input() == 'y')
if print_ops:
print("\nThe investor's decisions will be plotted. A green number means a \"buy\" operation and a red "
"number means a \"sell\" operation.\n"
"The decisions are displayed only when 1 or more stocks are bought or sold.\n"
"Over larger periods, it may be difficult to see the operations on the plot. Use the zoom to "
"better visualize them in these cases.")
if inv_num < 1 or inv_num > pop.size():
print("Invalid investor!")
else:
dynamic_plot(investors_history[inv_num - 1], ibov_var, print_ops)
if __name__ == "__main__":
opt = -1
while opt != 2:
print(
"\n\n< Neuro-Evolutionary Investor (by Talendar) >\n"
" [0] Train\n"
" [1] Evaluate\n"
" [2] Exit\n"
"Option: ", end=""
)
opt = int(input())
# train
if opt == 0:
train()
# evaluate
elif opt == 1:
evaluate()
print("\nLeaving...\n")