-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathReconstructionZvit.tex
322 lines (310 loc) · 19.6 KB
/
ReconstructionZvit.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
\documentclass[a4 paper,12pt]{report}
\usepackage[14pt]{extsizes}
\usepackage[cp1251]{inputenc}
\usepackage[ukrainian]{babel}
\usepackage{amsfonts,amsmath}
\usepackage{makeidx,bezier,latexsym,epsfig,layout}
\usepackage{graphics, graphicx}
%\documentclass{article}
\usepackage{pgfplots}
\pgfplotsset{compat=1.9}
\DeclareGraphicsRule{.jpeg}{bmp}{}{} \pagestyle{plain}
\textwidth 16 cm%\textheight 22.5 cm
\textheight 24.7 cm%\textwidth 16 cm
\topmargin -1.5 cm%\topmargin -1 cm
\evensidemargin 0 cm%\evensidemargin 0 cm
\oddsidemargin 0 cm%\oddsidemargin 0 cm
%Íàñòðîéêà ñòèëåé
\pgfplotsset{model/.style = {blue, samples = 100}}
\pgfplotsset{experiment/.style = {red}}
\renewcommand{\baselinestretch}{1.5}
\newtheorem{theorem}{Òåîðåìà}[chapter]
\newtheorem{colaborary}[theorem]{Íàñë³äîê}
\newtheorem{algorithm}[theorem]{Àëãîðèòì}
\newtheorem{determination}[theorem]{Îçíà÷åííÿ}
\newtheorem{example}[theorem]{Ïðèêëàä}
\newtheorem{lema}[theorem]{Ëåìà}
\newtheorem{remark}[theorem]{Çàóâàæåííÿ}
\renewcommand{\chaptername}{Ðîçä³ë}
\renewcommand{\thepart}{\thechapter\arabic{Ðîçä³ë}.}
\renewcommand{\thesection}{\thechapter.\arabic{section}.}
\renewcommand{\thesubsection}{\thesection\arabic{subsection}.}
\renewcommand{\figurename}{Ðèñ.}
\renewcommand{\tablename}{Òàáëèöÿ}
\begin{document}
%%%%%%%%%%%%%%%%%%%%%%%%òèòóëüíà ñòîð³íêà
\titlepage
\begin{center}
\large {Ëüâ³âñüêèé íàö³îíàëüíèé óí³âåðñèòåò ³ìåí³ ²âàíà Ôðàíêà}\\
\normalsize{Ôàêóëüòåò ïðèêëàäíî¿ ìàòåìàòèêè òà ³íôîðìàòèêè}\\
\normalsize{Êàôåäðà îá÷èñëþâàëüíî¿ ìàòåìàòèêè}\\
\end{center}
\vspace*{0.5cm}
\begin{center}
\Large{\textbf{Çâ³ò}}\\
\large{ç êóðñó "Ìåòîäè ðåãóëÿðèçàö³¿ äëÿ ðîçâ'ÿçóâàííÿ îáåðíåíèõ çàäà÷" \\ }
\large{íà òåìó: \\}
\Large{\textbf{×èñåëüíå ðîçâ'ÿçóâàííÿ çàäà÷³ Êîø³ äëÿ ð³âíÿííÿ Ëàïëàñà â 2-âèì³ðí³é äâîçâ'ÿçí³é îáëàñò³ íåïðÿìèì ìåòîäîì ³íòåãðàëüíèõ ð³âíÿíü}}
\end{center}
\normalsize
\vspace*{1cm}\hspace*{11cm}Âèêîíàëè\\
\hspace*{11cm}ñòóäåíòè ãðóïè ÏÌï-51 \\
\hspace*{11cm}Ãëàäèø Ðîìàí\\
\hspace*{11cm}Êàíàôîöüêèé Òàðàñ\\
\\ \\
\hspace*{11cm}Íàóêîâ³ êîíñóëüòàíòè:\\
\hspace*{11cm}ïðîô. Õàïêî Ð.Ñ.\\
\hspace*{11cm}àñ. Áîðà÷îê ².Â.\\
\\
\centerline{Ëüâ³â - 2017}
%!!!!!!!!!!!!!!!!!!!!!!!!ñòîð³íêà çì³ñòó!!!!!!!!!!!!!!!!!!!!!
\tableofcontents
\newpage
\chapter*{Âñòóï} \addcontentsline{toc}{chapter}{Âñòóï}
\normalsize
\hspace*{\parindent} \hspace*{\parindent} Âïðîäîâæ îñòàíí³õ ðîê³â âñå á³ëüøî¿ ïîïóëÿðíîñò³ íàáóâàþòü íàáëèæåí³, ÷èñåëüí³ òà ìàøèíí³ ìåòîäè ðîçâÿçóâàííÿ ³íòåãðàëüíèõ ð³âíÿíü, îñê³ëüêè ¿¿ çàñòîñóâàííÿ äîçâîëÿº îòðèìàòè åôåêòèâí³ ìàòåìàòè÷í³ îïèñè áàãàòüîõ çàäà÷. Íàêðèêëàä, çà äîïîìîãîþ ³íòåãðàëüíèõ ð³âíÿíü àíàë³çóþòü ïðîöåñè â äèíàì³÷íèõ ñèñòåìàõ, âèçíà÷àþòü ³ìïóëüñíó ôóíêö³þ ë³í³éíî¿ ñèñòåìè, ðîçâ'ÿçóþòü çàäà÷³ îïòèìàëüíî¿ ô³ëüòðàö³¿, çàäà÷³ â³äíîâëåííÿ ñèãíàëó ³ òä.\\
\hspace*{\parindent}Âàæëèâó ðîëü ó ðîçâ'ÿçóâàíí³ ðÿäó çàäà÷ ìàòåìàòè÷íî¿ ô³çèêè â³ä³ãðຠìåòîä ãðàíè÷íèõ ³íòåãðàëüíèõ ð³âíÿíü, çà äîïîìîãîþ ÿêîãî çâîäÿòü â³äïîâ³äíó äèôåðåíö³àëüíó çàäà÷ó äî åêâ³âàëåíòíîãî ³íòåãðàëüíîãî ð³âíÿííÿ. Òîìó ñêëàäຠ³íòåðåñ çàñòîñóâàííÿ åôåêòèâíèõ ìåòîä³â äëÿ ÷èñåëüíîãî ðîçâ'ÿçóâàííÿ îòðèìàíîãî ³íòåãðàëüíîãî ð³âíÿííÿ. Òîìó çàçíà÷èìî, ùî ìåòîä ãðàíè÷íèõ ³íòåãðàëüíèõ ð³âíÿíü åôåêòèâí³øèé çà ìåòîä ñê³í÷åííèõ ð³çíèöü, ìåòîä ñê³í÷åííèõ åëåìåíò³â òà ³íø³, îñê³ëüêè âîëî䳺 òàêèìè ïåðåâàãàìè ÿê : \begin{itemize}
\item ðîçì³ðí³ñòü çàäà÷³ çìåíøóºòüñÿ íà 1;
\item ìåòîä çàñòîñîâíèé äëÿ îáëàñòåé ç ãðàíèöÿìè äîâ³ëüíî¿ ôîðìè;
\item çàñòîñîâíèé ó âèïàäêó íåîáìåæåíèõ îáëàñòåé.
\end{itemize}
Ìåòîþ ö³º¿ ðîáîòè º ÷èñåëüíå ðîçâ'ÿçóâàííÿ çîâí³øíüî¿ çàäà÷³ Êîø³ äëÿ ð³âíÿííÿ Ëàïëàñ ó äâîçâ'ÿçí³é îáëàñò³ íåïðÿìèì ìåòîäîì ãðàíè÷íèõ ³íòåãðàëüíèõ ð³âíÿíü. Òàêèì ÷èíîì ìè çâåäåìî çàäà÷ó ó äâîâèì³ðí³é îáëàñò³ äî çàäà÷³ ç íà îäèíèöþ ìåíøîþ ðîçì³ðíîñòþ. Òàêîæ îäí³ºþ ç ïåðåâàã öüîãî ìåòîäó º ìîæëèâ³ñòü îòðèìàòè ðîçâ'ÿçîê âèñîêî¿ ÿêîñò³ áåç âåëèêèõ ÷èñåëüíèõ çàòðàò.
\newpage
\chapter{Äîñë³äæåííÿ çàäà÷³}
\section{Ïîñòàíîâêà çàäà÷³ Êîø³ äëÿ ð³âíÿííÿ Ëàïëàñà}
\hspace*{\parindent} Íåõàé â îáìåæåí³é îáëàñò³ $D_2 \subset R^2$ ç ãðàíèöåþ $\Gamma_2$ ì³ñòèòüñÿ îäíîçâ'ÿçíà îáìåæåíà îáëàñòü $D_1 \subset R^2$ ç ãðàíèöåþ $\Gamma_1 \in C^2$, òàêà ùî $\overline{D_1} \subset R^2$. Îáëàñòü $D_1$ íàçèâàòèìåìî âíóòð³øí³ì âêëþ÷åííÿì îáëàñò³ $D_2$. Òàêîæ ïîçíà÷èìî ÷åðåç $D := D_2 \backslash \overline{D_1}$. Ïîòð³áíî çíàéòè ðåãóëÿðíó â îáëàñò³ $D$ ôóíêö³þ $u \in C^2(D)\bigcap C(\overline{D})$ , ÿêà çàäîâîëüíÿº ð³âíÿííÿ Ëàïëàñà
\begin{equation}
\label{Laplace}
\Delta u = 0 \quad \textup{â } D
\end{equation}
³ â³äïîâ³äí³ ãðàíè÷í³ óìîâè ijð³õëå ³ Íåéìàíà
\begin{equation}
\label{Dirichlet}
u = f \quad \textup{íà } D
\end{equation}
\begin{equation}
\label{Neuman}
\frac{\partial u}{\partial \nu} = g \quad \textup{íà } \Gamma_2,
\end{equation}
à òàêîæ $ \frac{\partial u}{\partial \nu}, u \textup{ íà } \Gamma_1$.
\section{Ïîòåíö³àëè ïðîñòîãî ³ ïîäâ³éíîãî øàðó òà ¿õ âëàñòèâîñò³}
\hspace*{\parindent} Íåõàé áëàñòü $D_1$ âíóòð³øíº âêëþ÷åííÿ îáëàñò³ $D_2$ ç ãðàíèöåþ $\Gamma_1$ ç êëàñó $C^p \quad (p\geq2)$. Äëÿ ôóíêö³¿ $\varphi \in C(\Gamma_1)$ âèçíà÷èìî ôóíêö³¿
\begin{equation}
\label{potential1}
u(x) = \int\limits_{\Gamma_1} \, \varphi(y)\Phi(x,y) ds(y) , \quad x \in D_2\setminus\Gamma_1
\end{equation}
òà
\begin{equation}
\label{potential2}
\upsilon(x) = \int\limits_{\Gamma_1} \, \varphi(y)\frac{\Phi(x,y)}{\nu(y)} ds(y) , \quad x \in D_2\setminus\Gamma_1
\end{equation}
ÿê ìîäèô³êîâàí³ ïîòåíö³àëè ïðîñòîãî òà ïîäâ³éíîãî øàðó ç ãóñòèíîþ $\varphi $ â³äïîâ³äíî.\\
\hspace*{\parindent} Òóò $\Phi$ ôóíäàìåíòàëüíèé ðîçâ'ÿçîê ð³âíÿííÿ Ëàïëàñà (\ref{Laplace}) â $\mathbb{R}^2$
\begin{equation}
\begin{split}
\label{fundSol}
\Phi(x,y) & := -\frac{1}{2\pi}\ln |x-y|, \\
|x-y| & =\sqrt{(x_1-y_1)^2 + (x_2-y_2)^2},
\end{split}
\end{equation}
$\nu$ - âíóòð³øíÿ íîðìàëü äî ãðàíèö³ âíóòð³øíüîãî âêëþ÷åííÿ $\Gamma_1$.\\
\hspace*{\parindent} Íà îñíîâ³ êëàñè÷íèõ ðåçóëüòàò³â \cite{Kress} òà ³ç âðàõóâàííÿì âëàñòèâîñòåé ôóíäàìåíòàëüíîãî ðîçâ'ÿçêó (\ref{fundSol}), äëÿ ïîòåíö³àë³â (\ref{potential1}) òà (\ref{potential1}) ñïðàâåäëèâ³ íàñòóïí³ òâåðäæåííÿ.
\begin{theorem}
\label{theorem 1}
Íåõàé $\Gamma_0 \in C^p \quad (p\geq2)$ ³ $\varphi \in C(\Gamma_1)$. Òîä³ ïîòåíö³àë ïðîñòîãî øàðó (\ref{potential1}) ç ãóñòèíîþ $\varphi$ º ðåãóëÿðíîþ ôóíêö³ºþ â îáëàñò³ $D$ ³ çàäîâîëüíÿº îö³íêó
$$
\| u\|_{\infty,D_2} \leq C \|\varphi\|_{\infty,\Gamma_1},
$$
äå $\| \cdot\|_{\infty}$ ïîçíà÷ຠíîðìó â ïðîñòîð³ íåïåðåðâíèõ ôóíêö³é, $C > 0$ - äåÿêà êîíñòàíòà.Íà ãðàíèö³ $\Gamma_1$ ìàºìî íàñòóïíå ïðåäñòàâëåííÿ
$$
u(x) = \int\limits_{\Gamma_1} \, \varphi(y)\Phi(x,y) ds(y) , \quad x \in \Gamma_1.
$$
\end{theorem}
\begin{theorem}
\label{theorem 2}
Ïîòåíö³àë ïîäâ³éíîãî øàðó (\ref{potential2}) ç ãóñòèíîþ $\varphi \in C(\Gamma_1)$ ìîæíà íåïåðåðâíî ïðîäîâæèòè ç îáëàñò³ $D_2$ â $\overline{D_1}$ ³ ç $D_2\backslash \overline{D_1}$ â $\overline{D_1}$ ³ç íàñòóïíèìè çíà÷åííÿìè íà ãðàíèö³ $\Gamma_1$
$$
\frac{\partial u}{\partial \nu}(x) = \int\limits_{\Gamma_1} \, \varphi(y)\frac{\partial^2\Phi(x,y)}{\partial \nu(x) \partial \nu(x)} ds(y) , \quad x \in \Gamma_1.
$$
Ìàþòü ì³ñöå íàñòóïí³ îö³íêè :
$$
\| \upsilon\|_{\infty,\overline{D_1}} \leq C \|\varphi\|_{\infty,\Gamma_1} ,\quad \| \upsilon\|_{\infty,D_2 \backslash D_1} \leq C \|\varphi\|_{\infty,\Gamma_1}.
$$
\end{theorem}
\section{Çâåäåííÿ äî ñèñòåìè ²Ð }
\hspace*{\parindent} Âèêîðèñòîâóþ÷è ðåçóëüòàòè ïîïåðåäí³õ ï³äðîçä³ë³â, ïîäàìî ðîçâ'ÿçîê çàäà÷³ (\ref{Laplace})-(\ref{Neuman}) ó âèãëÿä³ êîìá³íàö³¿ ïîòåíö³àë³â ïîäâ³éíîãî øàðó
\begin{equation}
\label{solution}
u(x) = \int_{\Gamma _1} \varphi_1(y)\frac{\partial \Phi(x,y)}{\partial \nu(y)}ds(y) + \int_{\Gamma _2} \varphi_1(y)\frac{\partial \Phi(x,y)}{\partial \nu(y)}ds(y), \quad x \in D,
\end{equation}
ç íåâ³äîìèìè ãóñòèíàìè $\varphi_1 \in C(\Gamma_1)$ ³ $\varphi_2 \in C(\Gamma_2)$.
Äàë³ âðàõóâàâøè ïîäàííÿ ðîçâ'ÿçêó (\ref{solution}) ³ çàñòîñóâàâøè ôîðìóëè ñòðèáê³â ïîòåíö³àë³â ïîäâ³éíîãî øàðó, ëåãêî áà÷èòè, íàêëàâøè óìîâè ijð³õëå ³ Íåéìàíà, çàäà÷ó (\ref{Laplace})-(\ref{Neuman}) ìîæíà çâåñòè äî íàñòóïíî¿ ñèñòåìè ãðàíè÷íèõ ³íòåãðàëüíèõ ð³âíÿíü.
\begin{equation}
\label{initEquation}
\begin{cases}
\int_{\Gamma _1} \varphi_1(y)\frac{\partial \Phi(x,y)}{\partial \nu(y)}ds(y) + \frac{1}{2}\varphi_2(x) + \int_{\Gamma _2}\varphi(y)\frac{\partial \Phi(x,y)}{\partial \nu(y)}ds(y) =f(x), \quad x \in \Gamma_2,\\
\int_{\Gamma _1} \varphi_1(y)\frac{\partial \Phi(x,y)}{\partial\nu(x) \nu(y)}ds(y) + \frac{\partial}{\partial\nu(x)}\int_{\Gamma _2}\varphi(y)\frac{\partial \Phi(x,y)}{\partial \nu(y)}ds(y) =g(x), \quad x \in \Gamma_2,\\
\end{cases}
\end{equation}
\hspace*{\parindent}Òàêîæ ç ìåòîþ çìåíøåííÿ ñòåïåíÿ ñèíãóëÿðíîñò³ â ã³ïåðñèíãóëÿðíîìó ³íòåãðàë³ â ñèñòåì³ (\ref{initEquation}) ñêîðèñòàºìîñü ð³âí³ñòþ
\begin{equation}
\frac{\partial}{\partial\nu(x)}\int_{\Gamma _2}\varphi(y)\frac{\partial \Phi(x,y)}{\partial \nu(y)}ds(y)=\int_{\Gamma_2}\frac{\partial\varphi_2}{\partial \Theta}(y) \frac{\Phi(x,y)}{\partial \Theta(x)}ds(y),\quad x \in \Gamma_2,
\end{equation}
äîâåäåííÿ ÿêî¿ ìîæíà çíàéòè ó \cite{Kress}. Òóò $\Theta$ - öå îäèíè÷íèé âåêòîð äîòè÷íî¿ äî $\Gamma_2$.\\
\hspace*{\parindent}Òîìó ñèñòåìà ñèñòåìà ³íòåãðàëüíèõ ð³âíÿíü (\ref{initEquation}) íàáóäå âèãëÿäó
\begin{equation}
\label{system}
\begin{cases}
\int_{\Gamma _1} \varphi_1(y)\frac{\partial \Phi(x,y)}{\partial \nu(y)}ds(y) + \frac{1}{2}\varphi_2(x) + \int_{\Gamma _2}\varphi(y)\frac{\partial \Phi(x,y)}{\partial \nu(y)}ds(y) =f(x), \quad x \in \Gamma_2,\\
\int_{\Gamma _1} \varphi_1(y)\frac{\partial \Phi(x,y)}{\partial\nu(x) \nu(y)}ds(y) + \int_{\Gamma_2}\frac{\partial\varphi_2}{\partial \Theta}(y) \frac{\Phi(x,y)}{\partial \Theta(x)}ds(y) =g(x), \quad x \in \Gamma_2,\\
\end{cases}
\end{equation}
\section{Ïàðàìåòðèçàö³ÿ}
\hspace*{\parindent}Íåõàé ãðàíèö³ $\Gamma_1$ ³ $\Gamma_2$ çàäàþòüñÿ ïàðàìåòðè÷íî ÿê
\begin{equation}
\label{Gamma1}
\Gamma_1 := \big\{\eta(t)+ d := (\eta_1(t) + d_1, \eta_2(t) + d_2), \quad t \in [0, 2\pi]\big\},
\end{equation}
\begin{equation}
\label{Gamma2}
\Gamma_2 := \big\{\sigma(t) + d := (\sigma_1(t) + d_1, \sigma_2(t) + d_2), \quad t \in [0, 2\pi]\big\},
\end{equation}
äå òî÷êà $d=(d_1, d_2)$ âêàçóº íà â³äñòàíü â³ä ïî÷àòêó êîîðäèíàò. Ôóíêö³¿ $\sigma : [0, 2\pi] \rightarrow \mathbb{R}^2$ òà $\eta : [0, 2\pi] \rightarrow \mathbb{R}^2$ - $2\pi$-ïåð³îäè÷í³, íàëåæàòü êëàñó $C^2[0,\pi]$, º ³í'ºêòèâíèìè ³ òàê³, ùî $\sigma'(t) \neq 0$ òà $\eta'(t) \neq 0$ $ \forall t\in [0,\pi]$.
\hspace*{\parindent}Òîä³ ñèñòåìó (\ref{system}) ìîæíà ïîäàòè ó ïàðàìåòðèçîâàíîìó âèãëÿä³
\begin{equation}
\label{systemParamtrized}
\begin{cases}
\displaystyle\int_0^{2\pi}\mu_1(\tau)H_{11}(t,\tau)d\tau + \frac{\mu_2(t)}{2|\sigma'(t)|} + \int_0^{2\pi}\mu_2(\tau)H_{12}(t,\tau)d\tau = f(\sigma(t)),\, t \in [0,2\pi]\\
\displaystyle\int_0^{2\pi}\mu_1(\tau)H_{21}(t,\tau)d\tau + \int_0^{2\pi}\mu_2'(\tau)K_{22}(t,\tau)d\tau = g(\sigma(t)),\, t \in [0,2\pi]
\end{cases}
\end{equation}
$$\mu_1(\tau) = \varphi_1(\eta(\tau))|\eta'(\tau)| \quad \mu_2(\tau) = \varphi_2(\sigma(\tau))|\sigma'(\tau)|$$
ç ãëàäêèìè $2\pi$-ïåð³îäè÷íèìè ôóíêö³ÿìè
\begin{equation}
\label{H11}
H_{11}(t,\tau)=\frac{1}{2\pi}\frac{\langle\sigma(t)-\eta(\tau),\nu(\eta(\tau))\rangle}{|\sigma(t)-\eta(\tau)|^2}
\end{equation}
\begin{equation}
\label{H21}
H_{21}(t,\tau) = \frac{1}{2\pi}\Bigg(\frac{\langle\nu(\eta(\tau)), \nu(\sigma(t))\rangle}{|\sigma(t)-(\eta(\tau))|^2} - \frac {2\langle\sigma(t)-\eta(\tau), \nu(\eta(\tau))\rangle\langle\sigma(t)-\eta(\tau),\nu(\sigma(t))\rangle}{|\sigma(t)-\eta(\tau)|^4}\Bigg)
\end{equation}
\begin{equation}
\label{H12}
H_{12}(t,\tau) =
\frac{1}{2\pi}\frac{\langle\sigma(t)-\sigma(\tau),\nu(\eta(\tau))\rangle}{|\sigma(t)-\eta(\tau)|^2}, \quad t \neq \tau
\end{equation}
ç ä³àãîíàëüíèìè åëåìåíòàìè
\begin{equation}
\label{H12diagon}
\lim_{\tau \to t}H_{12}(t,\tau) = \frac{1}{2\pi}\frac{\langle\sigma^{''}(t), \nu(\sigma(t))\rangle}{|\sigma^{'}(t)|^2}.
\end{equation}
³ âåêòîðîì íîðìàë³ òà äîòè÷íî¿ â³äïîâ³äíî
\begin{equation}
\label{normalVector}
\nu(\sigma(t))=\frac{1}{|\sigma(t)|}\Big(\sigma_2^{'}(t),
-\sigma_1^{'}(t)\Big),
\end{equation}
\begin{equation}
\label{Dotichna}
\Theta(\sigma(t))=\frac{1}{|\sigma(t)|}\Big(\sigma_1^{'}(t),\sigma_2^{'}(t)\Big).
\end{equation}
\hspace*{\parindent}ϳä³íòåãðàëüíà ôóíêö³ÿ
\begin{equation}
\label{K22}
K_{22}(t,\tau) = -\frac{1}{2\pi}\frac{\langle\sigma(t)-\sigma(\tau),\Theta(\sigma(\tau))\rangle}{|\sigma(t)-\sigma(\tau)|^2},
\end{equation}
ì³ñòèòü ã³ïåðñèíãóëÿðíó îñîáëèâ³ñòü, äëÿ âèä³ëåííÿ ÿêî¿ çä³éñíèìî íàñòóïí³ ïåðåòâîðåííÿ, ñêîðèñòàâøèñü ôîðìóëîþ ³íòåãðóâàííÿ ÷àñòèíàìè ³ âðàõóâàâøè $2\pi$-ïåð³îäè÷í³ñòü ôóíêö³é $K_{22}$ òà $\mu_2$,
\begin{equation}
\int_0^{2\pi}\mu_2'(\tau)K_{22}(t,\tau)d\tau = -\int_0^{2\pi}\mu_2(\tau)\frac{1}{2\sin^2(\frac{t-\tau}{2})}\{{K_{22}}_t'(t,\tau)2\sin^2(\frac{t-\tau}{2})\}d\tau.
\end{equation}
Äàë³ ñêîðèñòàºìîñü ïðàâèëîì Ëîï³òàëÿ, îá÷èñëèìî íåîáõ³äí³ ïîõ³äí³ ³ îòðèìàºìî òîòîæí³ñòü
\begin{equation}
\label{H22inEq}
\int_0^{2\pi}\mu_2'(\tau)K_{22}(t,\tau)d\tau = \int_0^{2\pi}\mu_2(\tau)\frac{1}{2\sin^2(\frac{t-\tau}{2})}H_{22}(t,\tau)d\tau,
\end{equation}
äå $H_{22}$ - ãëàäêà $2\pi$-ïåð³îäè÷íà ôóíêö³ÿ
\begin{multline}
H_{22}(t,\tau)=\frac{1}{\pi}( \frac{2\langle\sigma(t)-\sigma(\tau),\sigma^{'}(\tau)\rangle\langle\sigma(t)-\sigma(\tau),\sigma^{'}(t)\rangle}{|\sigma(t)-\sigma(\tau)|^4}\\ -\frac{\langle\sigma^{'}(t),\sigma^{'}(\tau)\rangle}{|\sigma(t)-\sigma(\tau)|^2})\sin^2(\frac{t-\tau}{2})
\end{multline}
ç ä³àãîíàëüíèìè åëåìåíòàìè
\begin{equation}
\lim_{\tau \to t}H_{22}(t,\tau)=-\frac{1}{2\pi|\sigma(t)|}.
\end{equation}
\hspace*{\parindent}Òàêèì ÷èíîì ñèñòåìó íåêîðåêòíèõ ³íòåãðàëüíèõ ð³âíÿíü áóëî çâåäåíî äî íàñòóïíîãî âèãëÿäó
\begin{equation}
\label{systemParamFinal}
\begin{cases}
\displaystyle\frac{1}{2}\mu_2(t) + \int_0^{2\pi}\Big\{\mu_1(\tau) H_{11}(t,\tau)+
\mu_2(\tau)H_{12}(t,\tau)\Big\}d\tau = f(\sigma(t)),\\
\displaystyle\int_0^{2\pi}\Big\{ \mu_1(\tau)H_{21}(t,\tau) + \mu(\tau)\frac{1}{2\sin^2\big(\frac{t-\tau}{2})}H_{22}(t,\tau)\Big\}d\tau=g(\sigma(t))
\end{cases}
\end{equation}
\section{Ìåòîä òðèãîíîìåòðè÷íèõ êâàäðàòóð}
\hspace*{\parindent} ×èñåëüíå ðîçâÿçóâàííÿ ñèñòåìè ³íòåãðàëüíèõ ð³âíÿíü(\ref{systemParamFinal}) çä³éñíèìî ìåòîäîì êâàäðàòóð \cite{Chapko_Kress}. Äëÿ öüîãî íà ðîçáèòò³ $t_i := \frac{i\pi}{n},\quad i =0,..,2n-1, n \in \mathbb{N}$ ðîçãëÿíåìî òàê³ êâàäðàòóðí³ ôîðìóëè:
\begin{equation}
\label{quadrFormul1}
\frac{1}{2\pi}\int_0^{2\pi} \, f(\tau) d\tau \approx\frac{1}{2n}\sum_{j=0}^{2n-1}f(t_j)
\end{equation}
\begin{equation}
\label{quadrFormul3}
\frac{1}{2\pi}\int_0^{2\pi} \, \frac{f(\tau)}{2\sin^2{\frac{t-\tau}{2}}} d\tau \approx\sum_{j=0}^{2n-1}f(t_j)T^n_j(t)
\end{equation}
ç âàãîâèìè ôóíêö³ÿìè
$$
T^n_j(t) := -\frac{1}{n}\sum_{m=1}^{n-1}{m\cos{m(t-t_j)}} + \frac{\cos{n(t-t_j)}}{2}.
$$
\hspace*{\parindent}Ö³ ôîðìóëè îòðèìàí³ ç âèêîðèñòàííÿì òðèãîíîìåòðè÷íî¿ ³íòåðïîëÿö³¿ äëÿ ãëàäêî¿ ÷àñòèíè $f$ ï³ä³íòåãðàëüíî¿ ôóíêö³¿ ³ ïîäàëüøîãî òî÷íîãî ³íòåãðóâàííÿ \cite{Kress}. ϳñëÿ çàñòîñóâàííÿ âèïèñàíèõ êâàäðàòóðíèõ ïðàâèë (\ref{quadrFormul1})-(\ref{quadrFormul3}) äî ³íòåãðàë³â ó ñèñòåì³ (\ref{systemParamFinal}) ³ êîëîêàö³¿ ó âóçëàõ êâàäðàòóðíèõ ôîðìóë îòðèìàºìî òàêó ñèñòåìó ë³í³éíèõ ð³âíÿíü ðîçì³ðí³ñòþ $4n\times4n$:
\begin{equation}
\label{systemDiscret}
\begin{cases}
\displaystyle \frac{\pi}{n}\sum_{j=0}^{2n-1}\mu_1(t_j)H_{11}(t_i,t_j)+\frac{\mu_2(t_i)}{2|\sigma^{'}(t_i)|} \\+ \displaystyle\frac{\pi}{n}\sum_{j=1}^{2n-1}\mu_2(t_j)H_{22}(t_i,t_j)=f(\sigma(t_i))\\
\displaystyle \frac{\pi}{n}\sum_{j=0}^{2n-1}\mu_1(t_j)H_{21}(t_i)(t_j)\\
\displaystyle+2\pi\sum_{j=0}^{2n-1}\mu_2(t_j)T_j^n(t_i)H_{22}^{(1)}(t_i,t_j)=q(\sigma(t_i))
\end{cases}
\end{equation}
ùîäî íåâ³äîìèõ çíà÷åíü $\mu_{1j} \approx \mu_1(t_j)$ ³ $\mu_{2j} \approx \mu_2(t_j)$.\\
\hspace*{\parindent}Ó ïðàö³ \cite{Chapko_Kress} íà ï³äñòàâ³ òåî𳿠êîëåêòèâíî êîìïàêòíèõ îïåðàòîð³â äîñë³äæåíî çá³æí³ñòü ³ ïîõèáêó ïðîïîíîâàíîãî ìåòîäó. Çîêðåìà, ÿêùî \\$\Gamma_2 \in C^\infty$ ³ $F \in C^{p+1}$, òî ìຠì³ñöå îö³íêà $\|\tilde{\mu_n} - \mu\|_{0,\alpha}\leq Cn^{-p}$, äå $\tilde{\mu_n}$ - òðèãîíîìåòðè÷íèé ïîë³íîì ïîáóäîâàíèé çà äîïîìîãîþ çíà÷åíü $\mu_j$, çíàéäåíèõ ç ñèñòåìè (\ref{systemDiscret}). Îòæå öåé ìåòîä íàëåæèòü äî àëãîðèòì³â áåç íàñè÷åííÿ,òîáòî éîãî òî÷í³ñòü ïîâÿçàíà ³ç ãëàäê³ñòþ âõ³äíèõ äàíèõ. Çàóâàæèìî, ùî çà àíàë³òè÷íîñò³ $\Gamma_2$ ³ $F$ îòðèìóºìî åêñïîíåíö³éíó çá³æí³ñòü.
\section{Ðåãóëÿðèçàö³ÿ Ò³õàíîâà}
\hspace*{\parindent}Ìåòîä ðåãóëÿðèçàö³¿ Ò³õîíîâà - àëãîðèòì, ùî äîçâîëÿº çíàõîäèòè íàáëèæåíèé ðîçâ'ÿçîê íåêîðåêòíèõ îïåðàòîðíèõ ð³âíÿíü âèäó $Ma=b$. Áóâ ðîçðîáëåíèé À.Í. Ò³õîíîâèì â 1965 ð .Îñíîâíà ³äåÿ ïîëÿãຠâ çíàõîäæåíí³ íàáëèæåíîãî ðîçâ'ÿçêó ð³âíÿííÿ $Ma=b$ ó âèãëÿä³ $x_{\delta} = R(b_{\delta}, \lambda)$, äå $R(b_{\delta},\lambda)$ - ðåãóëÿðèçóþ÷èé îïåðàòîð, äå $\lambda$ - ïàðàìåòð ðåãóëÿðèçàö³¿. ³í ïîâèíåí ãàðàíòóâàòè, ùî ïðè íàáëèæåíí³ $b_{\delta}$ äî òî÷íîãî çíà÷åííÿ $b_{T}$ ïðè $\delta \rightarrow 0$ íàáëèæåíèé ðîçâ'ÿçîê $a_{\delta}$ ïðÿìóº äî áàæàíîãî òî÷íîãî ðîçâ'ÿçêó $a_{T}$ ð³âíÿííÿ $Ma = b_{T}$.\\
\hspace*{\parindent} Ó íàøîìó âèïàäêó ó ÿêîñò³ ðåãóëÿðèçîâàíîãî ðîçâ'ÿçêó ð³âíÿííÿ $Ma=b$, äå $M$ - ìàòðèöÿ $4n\times4n$ ³ $b \in \mathbb{R}^{4n}$, áðàòèìåìî ðîçâ'ÿçîê, ÿêèé ì³í³ì³çóº íàñòóïíèé âèðàç:
$$
a_{\lambda} = \arg\min{\|Ma_{\lambda} -b \|^{2}_2 + \lambda\|a_\lambda\|^{2}_2},
$$
ùî åêâ³âàëåòíî ðîçâ'ÿçêó òàêî¿ ñèñòåìè:
\begin{equation}
(M^TM + \lambda I)a_\lambda = M^Tb
\end{equation}
äå $M^T$- òðàíñïîíîâàíà ìàòðèöÿ $M$.
\section{Ïîäàííÿ Ðîçâ'ÿçêó}
$u$ íà $\Gamma_1$
\begin{equation}
u(x)=\frac{1}{2}\varphi_1(x) + \int_{\Gamma_1}\varphi_1(y)\frac{\partial\Phi(x,y)}{\partial\nu(y)}ds(y) +\int_{\Gamma_2}\varphi_2(y)\frac{\partial\Phi(x,y)}{\partial\nu(y)}ds(y)
\end{equation}
\begin{equation}
u(t_i)=\frac{\mu_1(t_i)}{2|\eta^{'}(t)|} + \frac{\pi}{n}\sum_{j=0}^{2n-1} \mu_1(t_j)H_{11}^{(1)}(t_i,t_j)+\frac{\pi}{n}\sum_{j=0}^{2n-1} \mu_2(t_j)H_{12}^{(1)}(t_i,t_j)
\end{equation}
\begin{equation}
H_{11}^{(1)}(t,\tau)=
\begin{cases}
\displaystyle \frac{1}{2\pi} \frac{\langle\eta(t)-\eta(\tau),\nu(\eta(\tau))\rangle}{|\eta(t)-\eta(\tau)|^2} \quad , t\neq\tau\\
\displaystyle \frac{1}{2\pi} \frac{\langle\eta(t)^{''},\nu(\eta(\tau))\rangle}{2|\eta(t)^{'}|^2} \quad , t\doteq\tau
\end{cases}
\end{equation}
\begin{equation}
H_{12}^{(1)}(t,\tau)=\frac{1}{2\pi}\frac{\langle\eta(t)-\sigma(\tau), \nu(\sigma(\tau))\rangle}{|\eta(t)-\sigma(\tau)|^2}
\end{equation}
\newpage
\chapter*{Âèñíîâîê} \addcontentsline{toc}{chapter}{Âèñíîâîê}
\hspace*{\parindent}Ó äàí³é ðîáîò³ ðîçãëÿíóòî ìåòîä ãðàíè÷íèõ ³íòåãðàëüíèõ ð³âíÿíü äëÿ íàáëèæåíîãî ðîçâ'ÿçóâàííÿ çàäà÷³ Êîø³ äëÿ ð³âíÿííÿ Ëàïëàñà. Ïîêàçàíî ¿¿ íåêîðåêòí³ñòü. Ç âèêîðèñòàííÿì âëàñòèâîñòåé ïîòåíö³àë³â ïðîñòîãî øàðó îòðèìàíî ñèñòåìó ²Ð ç ãëàäêèìè ³ ñèíãóëÿðíèìè ï³ä³íòåãðàëüíèìè ôóíêö³ÿìè. Äàë³ çàäà÷ó Êîø³ ïåðåòâîðåíî ó ñèñòåìó ë³í³éíèõ àëãåáðè÷íèõ ð³âíÿíü, øëÿõîì ïàðàìåòðèçàö³¿ òà íàáëèæåíîãî îá÷èñëåííÿ ³íòåãðàë³â çà äîïîìîãîþ â³äïîâ³äíèõ òðèãîíîìåòðè÷íèõ êâàäðàòóðíèõ ôîðìóë. Äî îòðèìàíî¿ íåêîðåêòíî¿ ñèñòåìè ë³í³éíèõ àëãåáðà¿÷íèõ ð³âíÿíü çàñòîñîâàíî ìåòîä ðåãóëÿðèçàö³¿ Ò³õàíîâà.\\
\hspace*{\parindent}Ïðîâåäåíî ÷èñåëüíå ðîçâ'ÿçóâàííÿ çàäà÷³ ó äâîçâ'ÿçí³é îáëàñò³ ç âèêîðèñòàííÿì ìîâè ïðîãðàìóâàííÿ R.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newpage
\renewcommand{\bibname}{Ñïèñîê ë³òåðàòóðè}
\begin{thebibliography}{99}
\addcontentsline{toc}{chapter}{Ñïèñîê ë³òåðàòóðè}
\bibitem{Chapko_Kress}
\emph{Chapko R.,Kress R.} On a quadrature method for a logarithmic integral equation of the first kind// World of Scientific Series in Applicable Analisis -Vol.2 Contributions in Numerical Mathematics (Agarwal, ed.) World Scientific, Singapore, 1993. P.127-140.
\bibitem{Kress}
\emph{Kress R.} Linear Integral Equations, 2nd. ed. /R. Kress - New York: Springer-Verlag ,Heidelberg, 1999. - 367 p.
\end{thebibliography}
\end{document}