-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtest_auc.py
executable file
·134 lines (106 loc) · 6.48 KB
/
test_auc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# from comet_ml import Experiment
import pdb
import os
os.environ['OPENBLAS_NUM_THREADS'] = '1'
import argparse
import logging
import torch
from scipy.sparse import SparseEfficiencyWarning
import numpy as np
from subgraph_extraction.datasets import SubgraphDataset, generate_subgraph_datasets
from utils.initialization_utils import initialize_experiment, initialize_model
from utils.graph_utils import collate_dgl, move_batch_to_device_dgl, collate_dgl_train, move_batch_to_device_dgl_train
from managers.evaluator import Evaluator
from utils.data_utils import process_files
from warnings import simplefilter
def main(params):
simplefilter(action='ignore', category=UserWarning)
simplefilter(action='ignore', category=SparseEfficiencyWarning)
graph_classifier = initialize_model(params, None, load_model=True)
adj_list, triplets, entity2id, relation2id, id2entity, id2relation, _,_,_,_ = process_files(params.file_paths, graph_classifier.relation2id)
# ent2rels = {k: torch.LongTensor(v).to(device=params.device) for k, v in ent2rels.items()}
# graph_classifier.ent2rels = ent2rels
logging.info(f"Device: {params.device}")
all_auc = []
auc_mean = 0
all_auc_pr = []
auc_pr_mean = 0
for r in range(1, params.runs + 1):
params.db_path = os.path.join(params.main_dir, f'data/{params.dataset}/test_subgraphs_{params.experiment_name}_{params.constrained_neg_prob}_en_{params.enclosing_sub_graph}')
generate_subgraph_datasets(params, splits=['test'],
saved_relation2id=graph_classifier.relation2id,
max_label_value=graph_classifier.gnn.max_label_value)
test = SubgraphDataset(params.db_path, 'test_pos', 'test_neg', params.file_paths, graph_classifier.relation2id,
add_traspose_rels=params.add_traspose_rels,
num_neg_samples_per_link=params.num_neg_samples_per_link,
use_kge_embeddings=params.use_kge_embeddings, dataset=params.dataset,
kge_model=params.kge_model, file_name=params.test_file)
test_evaluator = Evaluator(params, graph_classifier, test)
result = test_evaluator.eval(save=True)
logging.info('\nTest Set Performance:' + str(result))
all_auc.append(result['auc'])
auc_mean = auc_mean + (result['auc'] - auc_mean) / r
all_auc_pr.append(result['auc_pr'])
auc_pr_mean = auc_pr_mean + (result['auc_pr'] - auc_pr_mean) / r
auc_std = np.std(all_auc)
auc_pr_std = np.std(all_auc_pr)
logging.info('\nAvg test Set Performance -- mean auc :' + str(np.mean(all_auc)) + ' std auc: ' + str(np.std(all_auc)))
logging.info('\nAvg test Set Performance -- mean auc_pr :' + str(np.mean(all_auc_pr)) + ' std auc_pr: ' + str(np.std(all_auc_pr)))
if __name__ == '__main__':
logging.basicConfig(level=logging.INFO)
parser = argparse.ArgumentParser(description='TransE model')
# Experiment setup params
parser.add_argument("--experiment_name", "-e", type=str, default="default",
help="A folder with this name would be created to dump saved models and log files")
parser.add_argument("--dataset", "-d", type=str, default="Toy",
help="Dataset string")
parser.add_argument("--train_file", "-tf", type=str, default="train",
help="Name of file containing training triplets")
parser.add_argument("--test_file", "-t", type=str, default="test",
help="Name of file containing test triplets")
parser.add_argument("--runs", type=int, default=1,
help="How many runs to perform for mean and std?")
parser.add_argument("--gpu", type=int, default=0,
help="Which GPU to use?")
parser.add_argument('--disable_cuda', action='store_true', # default value is False
help='Disable CUDA')
# Data processing pipeline params
parser.add_argument("--max_links", type=int, default=100000,
help="Set maximum number of links (to fit into memory)")
parser.add_argument("--hop", type=int, default=3,
help="Enclosing subgraph hop number")
parser.add_argument("--max_nodes_per_hop", "-max_h", type=int, default=None,
help="if > 0, upper bound the # nodes per hop by subsampling")
parser.add_argument("--use_kge_embeddings", "-kge", type=bool, default=False,
help='whether to use pretrained KGE embeddings')
parser.add_argument("--kge_model", type=str, default="TransE",
help="Which KGE model to load entity embeddings from")
parser.add_argument('--model_type', '-m', type=str, choices=['dgl'], default='dgl',
help='what format to store subgraphs in for model')
parser.add_argument('--constrained_neg_prob', '-cn', type=float, default=0,
help='with what probability to sample constrained heads/tails while neg sampling')
parser.add_argument("--num_neg_samples_per_link", '-neg', type=int, default=1,
help="Number of negative examples to sample per positive link")
parser.add_argument("--batch_size", type=int, default=16,
help="Batch size")
parser.add_argument("--num_workers", type=int, default=8,
help="Number of dataloading processes")
parser.add_argument('--add_traspose_rels', '-tr', type=bool, default=False,
help='whether to append adj matrix list with symmetric relations')
parser.add_argument('--enclosing_sub_graph', '-en', type=bool, default=True,
help='whether to only consider enclosing subgraph')
# parser.add_argument('--comp_hrt', type=str, default='TransE')
parser.add_argument('--sort_data', type=bool, default=False)
params = parser.parse_args()
initialize_experiment(params, __file__)
params.file_paths = {
'train': os.path.join(params.main_dir, 'data/{}/{}.txt'.format(params.dataset, params.train_file)),
'test': os.path.join(params.main_dir, 'data/{}/{}.txt'.format(params.dataset, params.test_file))
}
if not params.disable_cuda and torch.cuda.is_available():
params.device = torch.device('cuda:%d' % params.gpu)
else:
params.device = torch.device('cpu')
params.collate_fn = collate_dgl_train
params.move_batch_to_device = move_batch_to_device_dgl_train
main(params)