-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathargs_mini.py
95 lines (82 loc) · 5.24 KB
/
args_mini.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# Copyright. All rights reserved.
# If you use this code for your research, please cite our paper:
# @inproceedings{jinxiang2022tSF,
# title={tSF: Transformer-based Semantic Filter for Few-Shot Learning},
# author={Jinxiang, Lai and Siqian, Yang and Wenlong, Liu and # NOCA:InnerUsernameLeak(论文署名)
# Yi, Zeng and Zhongyi, Huang and Wenlong, Wu and # NOCA:InnerUsernameLeak(论文署名)
# Jun, Liu and Bin-Bin, Gao and Chengjie, Wang}, # NOCA:InnerUsernameLeak(论文署名)
# booktitle={ECCV},
# year={2022}
# }
import time
import argparse
import torchFewShot
def argument_parser():
parser_mini = argparse.ArgumentParser(description='Train image model with cross entropy loss')
# Datasets (general)
parser_mini.add_argument('-d', '--dataset', type=str, default='miniImageNet_load')
parser_mini.add_argument('--load', default=True)
parser_mini.add_argument('-j', '--workers', default=8, type=int,
help="number of data loading workers (default: 4)")
parser_mini.add_argument('--height', type=int, default=84,
help="height of an image (default: 84)")
parser_mini.add_argument('--width', type=int, default=84,
help="width of an image (default: 84)")
# Optimization options
parser_mini.add_argument('--optim', type=str, default='sgd',
help="optimization algorithm (see optimizers.py), default=sgd")
parser_mini.add_argument('--lr', '--learning-rate', default=0.05, type=float,
help="initial learning rate, default=0.1")
parser_mini.add_argument('--weight-decay', default=5e-04, type=float,
help="weight decay (default: 5e-04)")
parser_mini.add_argument('--max-epoch', default=120, type=int,
help="maximum epochs to run, default=100")
parser_mini.add_argument('--start-epoch', default=0, type=int,
help="manual epoch number (useful on restarts)")
parser_mini.add_argument('--stepsize', default=[90], nargs='+', type=int,
help="stepsize to decay learning rate, default=[70]")
parser_mini.add_argument('--LUT_lr', default=[(20, 0.05), (90, 0.1), (100, 0.006), (110, 0.0012), (120, 0.00024)],
help="multistep to decay learning rate")
parser_mini.add_argument('--train-batch', default=4//4, type=int,
help="train batch size, default=4")
parser_mini.add_argument('--test-batch', default=4, type=int,
help="test batch size, default=4")
# Architecture settings
parser_mini.add_argument('--backbone', default='resnet12_gcn_640',
help="conv4_512, resnet12_gcn_640, wrn28_10")
# neck
parser_mini.add_argument('--neck', default='tSF', help="None, tSF")
parser_mini.add_argument('--num_queries', default={'coarse': 5}, help="num_queries for tSF in neck")
parser_mini.add_argument('--num_heads', default=4, help="num_heads for tSF in neck")
# auxiliary loss
parser_mini.add_argument('--using_focal_loss', default=True, help="focal loss")
parser_mini.add_argument('--rotation_loss', default=False, help="rotation self-supervied learning")
parser_mini.add_argument('--global_weighted_loss', default=False, help="global automatic weighted loss")
# other setting
parser_mini.add_argument('--num_classes', type=int, default=64, help="num_classes: train=64, val=16")
parser_mini.add_argument('--scale_cls', type=int, default=7)
# Miscs
parser_mini.add_argument('--save-dir', type=str, default='save-dir')
parser_mini.add_argument('--fix_backbone', default=False, help="fix backbone in training")
parser_mini.add_argument('--load_backbone', default=False, help="only load the backbone in training")
parser_mini.add_argument('--resume', type=str, default='None', metavar='PATH')
parser_mini.add_argument('--gpu-devices', default=[0,1,2,3])
parser_mini.add_argument('--norm_layer', type=str, default='torchsyncbn', help="bn, in, torchsyncbn")
parser_mini.add_argument('--local_rank')
# FewShot settting
parser_mini.add_argument('--nKnovel', type=int, default=5,
help='number of novel categories')
parser_mini.add_argument('--nExemplars', type=int, default=1,
help='number of training examples per novel category.')
parser_mini.add_argument('--train_nTestNovel', type=int, default=6 * 5,
help='number of test examples for all the novel category when training, default=6 * 5')
parser_mini.add_argument('--train_epoch_size', type=int, default=1200,
help='number of batches per epoch when training, default=1200')
parser_mini.add_argument('--nTestNovel', type=int, default=15 * 5,
help='number of test examples for all the novel category')
parser_mini.add_argument('--epoch_size', type=int, default=2000,
help='number of batches per epoch, default=2000')
parser_mini.add_argument('--phase', default='test', type=str,
help='use test or val dataset to early stop') # default='test' of CAN origin
parser_mini.add_argument('--seed', type=int, default=1)
return parser_mini