|
| 1 | +/** |
| 2 | + * @file |
| 3 | + * @brief Calculate quadratic equation with complex roots, i.e. b^2 - 4ac < 0. |
| 4 | + * |
| 5 | + * @author [Renjian-buchai](https://github.com/Renjian-buchai) |
| 6 | + * |
| 7 | + * @description Calculates any quadratic equation in form ax^2 + bx + c. |
| 8 | + * |
| 9 | + * Quadratic equation: |
| 10 | + * x = (-b +/- sqrt(b^2 - 4ac)) / 2a |
| 11 | + * |
| 12 | + * @example |
| 13 | + * int main() { |
| 14 | + * using std::array; |
| 15 | + * using std::complex; |
| 16 | + * using std::cout; |
| 17 | + * |
| 18 | + * array<complex<long double, 2> solutions = quadraticEquation(1, 2, 1); |
| 19 | + * cout << solutions[0] << " " << solutions[1] << "\n"; |
| 20 | + * |
| 21 | + * solutions = quadraticEquation(1, 1, 1); // Reusing solutions. |
| 22 | + * cout << solutions[0] << " " << solutions[1] << "\n"; |
| 23 | + * return 0; |
| 24 | + * } |
| 25 | + * |
| 26 | + * Output: |
| 27 | + * (-1, 0) (-1, 0) |
| 28 | + * (-0.5,0.866025) (-0.5,0.866025) |
| 29 | + */ |
| 30 | + |
| 31 | +#include <array> /// std::array |
| 32 | +#include <cassert> /// assert |
| 33 | +#include <cmath> /// std::sqrt, std::trunc, std::pow |
| 34 | +#include <complex> /// std::complex |
| 35 | +#include <exception> /// std::invalid_argument |
| 36 | +#include <iomanip> /// std::setprecision |
| 37 | +#include <iostream> /// std::cout |
| 38 | + |
| 39 | +/** |
| 40 | + * @namespace |
| 41 | + * @brief Mathematical algorithms |
| 42 | + */ |
| 43 | +namespace math { |
| 44 | + |
| 45 | +/** |
| 46 | + * @brief Quadratic equation calculator. |
| 47 | + * @param a quadratic coefficient. |
| 48 | + * @param b linear coefficient. |
| 49 | + * @param c constant |
| 50 | + * @return Array containing the roots of quadratic equation, incl. complex |
| 51 | + * root. |
| 52 | + */ |
| 53 | +std::array<std::complex<long double>, 2> quadraticEquation(long double a, |
| 54 | + long double b, |
| 55 | + long double c) { |
| 56 | + if (a == 0) { |
| 57 | + throw std::invalid_argument("quadratic coefficient cannot be 0"); |
| 58 | + } |
| 59 | + |
| 60 | + long double discriminant = b * b - 4 * a * c; |
| 61 | + std::array<std::complex<long double>, 2> solutions{0, 0}; |
| 62 | + |
| 63 | + if (discriminant == 0) { |
| 64 | + solutions[0] = -b * 0.5 / a; |
| 65 | + solutions[1] = -b * 0.5 / a; |
| 66 | + return solutions; |
| 67 | + } |
| 68 | + |
| 69 | + // Complex root (discriminant < 0) |
| 70 | + // Note that the left term (-b / 2a) is always real. The imaginary part |
| 71 | + // appears when b^2 - 4ac < 0, so sqrt(b^2 - 4ac) has no real roots. So, |
| 72 | + // the imaginary component is i * (+/-)sqrt(abs(b^2 - 4ac)) / 2a. |
| 73 | + if (discriminant > 0) { |
| 74 | + // Since discriminant > 0, there are only real roots. Therefore, |
| 75 | + // imaginary component = 0. |
| 76 | + solutions[0] = std::complex<long double>{ |
| 77 | + (-b - std::sqrt(discriminant)) * 0.5 / a, 0}; |
| 78 | + solutions[1] = std::complex<long double>{ |
| 79 | + (-b + std::sqrt(discriminant)) * 0.5 / a, 0}; |
| 80 | + return solutions; |
| 81 | + } |
| 82 | + // Since b^2 - 4ac is < 0, for faster computation, -discriminant is |
| 83 | + // enough to make it positive. |
| 84 | + solutions[0] = std::complex<long double>{ |
| 85 | + -b * 0.5 / a, -std::sqrt(-discriminant) * 0.5 / a}; |
| 86 | + solutions[1] = std::complex<long double>{ |
| 87 | + -b * 0.5 / a, std::sqrt(-discriminant) * 0.5 / a}; |
| 88 | + |
| 89 | + return solutions; |
| 90 | +} |
| 91 | + |
| 92 | +} // namespace math |
| 93 | + |
| 94 | +/** |
| 95 | + * @brief Asserts an array of complex numbers. |
| 96 | + * @param input Input array of complex numbers. . |
| 97 | + * @param expected Expected array of complex numbers. |
| 98 | + * @param precision Precision to be asserted. Default=10 |
| 99 | + */ |
| 100 | +void assertArray(std::array<std::complex<long double>, 2> input, |
| 101 | + std::array<std::complex<long double>, 2> expected, |
| 102 | + size_t precision = 10) { |
| 103 | + long double exponent = std::pow(10, precision); |
| 104 | + input[0].real(std::round(input[0].real() * exponent)); |
| 105 | + input[1].real(std::round(input[1].real() * exponent)); |
| 106 | + input[0].imag(std::round(input[0].imag() * exponent)); |
| 107 | + input[1].imag(std::round(input[1].imag() * exponent)); |
| 108 | + |
| 109 | + expected[0].real(std::round(expected[0].real() * exponent)); |
| 110 | + expected[1].real(std::round(expected[1].real() * exponent)); |
| 111 | + expected[0].imag(std::round(expected[0].imag() * exponent)); |
| 112 | + expected[1].imag(std::round(expected[1].imag() * exponent)); |
| 113 | + |
| 114 | + assert(input == expected); |
| 115 | +} |
| 116 | + |
| 117 | +/** |
| 118 | + * @brief Self-test implementations to test quadraticEquation function. |
| 119 | + * @note There are 4 different types of solutions: Real and equal, real, |
| 120 | + * complex, complex and equal. |
| 121 | + */ |
| 122 | +static void test() { |
| 123 | + // Values are equal and real. |
| 124 | + std::cout << "Input: \n" |
| 125 | + "a=1 \n" |
| 126 | + "b=-2 \n" |
| 127 | + "c=1 \n" |
| 128 | + "Expected output: \n" |
| 129 | + "(1, 0), (1, 0)\n\n"; |
| 130 | + std::array<std::complex<long double>, 2> equalCase{ |
| 131 | + std::complex<long double>{1, 0}, std::complex<long double>{1, 0}}; |
| 132 | + assert(math::quadraticEquation(1, -2, 1) == equalCase); |
| 133 | + |
| 134 | + // Values are equal and complex. |
| 135 | + std::cout << "Input: \n" |
| 136 | + "a=1 \n" |
| 137 | + "b=4 \n" |
| 138 | + "c=5 \n" |
| 139 | + "Expected output: \n" |
| 140 | + "(-2, -1), (-2, 1)\n\n"; |
| 141 | + std::array<std::complex<long double>, 2> complexCase{ |
| 142 | + std::complex<long double>{-2, -1}, std::complex<long double>{-2, 1}}; |
| 143 | + assert(math::quadraticEquation(1, 4, 5) == complexCase); |
| 144 | + |
| 145 | + // Values are real. |
| 146 | + std::cout << "Input: \n" |
| 147 | + "a=1 \n" |
| 148 | + "b=5 \n" |
| 149 | + "c=1 \n" |
| 150 | + "Expected output: \n" |
| 151 | + "(-4.7912878475, 0), (-0.2087121525, 0)\n\n"; |
| 152 | + std::array<std::complex<long double>, 2> floatCase{ |
| 153 | + std::complex<long double>{-4.7912878475, 0}, |
| 154 | + std::complex<long double>{-0.2087121525, 0}}; |
| 155 | + assertArray(math::quadraticEquation(1, 5, 1), floatCase); |
| 156 | + |
| 157 | + // Values are complex. |
| 158 | + std::cout << "Input: \n" |
| 159 | + "a=1 \n" |
| 160 | + "b=1 \n" |
| 161 | + "c=1 \n" |
| 162 | + "Expected output: \n" |
| 163 | + "(-0.5, -0.8660254038), (-0.5, 0.8660254038)\n\n"; |
| 164 | + std::array<std::complex<long double>, 2> ifloatCase{ |
| 165 | + std::complex<long double>{-0.5, -0.8660254038}, |
| 166 | + std::complex<long double>{-0.5, 0.8660254038}}; |
| 167 | + assertArray(math::quadraticEquation(1, 1, 1), ifloatCase); |
| 168 | + |
| 169 | + std::cout << "Exception test: \n" |
| 170 | + "Input: \n" |
| 171 | + "a=0 \n" |
| 172 | + "b=0 \n" |
| 173 | + "c=0\n" |
| 174 | + "Expected output: Exception thrown \n"; |
| 175 | + try { |
| 176 | + math::quadraticEquation(0, 0, 0); |
| 177 | + } catch (std::invalid_argument& e) { |
| 178 | + std::cout << "Exception thrown successfully \n"; |
| 179 | + } |
| 180 | +} |
| 181 | + |
| 182 | +/** |
| 183 | + * @brief Main function |
| 184 | + * @returns 0 on exit |
| 185 | + */ |
| 186 | +int main() { |
| 187 | + test(); // Run self-test implementation. |
| 188 | + return 0; |
| 189 | +} |
0 commit comments