@@ -31,7 +31,7 @@ subroutine test_integral_x_squared_0_to_1()
3131 lower_bound = 0.0_dp
3232 upper_bound = 1.0_dp
3333 panels_number = 1000000 ! Must be a positive integer
34- expected = 1.0_dp / 3.0_dp
34+ expected = 1.0_dp / 3.0_dp
3535 call midpoint(integral_result, lower_bound, upper_bound, panels_number, f_x_squared)
3636 call assert_test(integral_result, expected, " Test 1: ∫ x^2 dx from 0 to 1" )
3737 end subroutine test_integral_x_squared_0_to_1
@@ -43,7 +43,7 @@ subroutine test_integral_x_squared_0_to_2()
4343 lower_bound = 0.0_dp
4444 upper_bound = 2.0_dp
4545 panels_number = 1000000 ! Must be a positive integer
46- expected = 8.0_dp / 3.0_dp
46+ expected = 8.0_dp / 3.0_dp
4747 call midpoint(integral_result, lower_bound, upper_bound, panels_number, f_x_squared)
4848 call assert_test(integral_result, expected, " Test 2: ∫ x^2 dx from 0 to 2" )
4949 end subroutine test_integral_x_squared_0_to_2
@@ -52,7 +52,7 @@ end subroutine test_integral_x_squared_0_to_2
5252 subroutine test_integral_sin_0_to_pi ()
5353 real (dp) :: lower_bound, upper_bound, integral_result, expected
5454 integer :: panels_number
55- real (dp), parameter :: pi = 4.D0 * DATAN(1.D0 ) ! Define Pi. Ensure maximum precision available on any architecture.
55+ real (dp), parameter :: pi = 4.D0 * DATAN(1.D0 ) ! Define Pi. Ensure maximum precision available on any architecture.
5656 lower_bound = 0.0_dp
5757 upper_bound = pi
5858 panels_number = 1000000 ! Must be a positive integer
@@ -91,7 +91,7 @@ subroutine test_integral_cos_0_to_pi_over_2()
9191 real (dp), parameter :: pi = 4.D0 * DATAN(1.D0 ) ! Define Pi. Ensure maximum precision available on any architecture.
9292 integer :: panels_number
9393 lower_bound = 0.0_dp
94- upper_bound = pi / 2.0_dp
94+ upper_bound = pi/ 2.0_dp
9595 panels_number = 1000000 ! Must be a positive integer
9696 expected = 1.0_dp
9797 call midpoint(integral_result, lower_bound, upper_bound, panels_number, cos_function)
@@ -137,7 +137,7 @@ end function exp_function
137137 ! Function for 1/x
138138 real(dp) function log_function (x )
139139 real (dp), intent (in ) :: x
140- log_function = 1.0_dp / x
140+ log_function = 1.0_dp / x
141141 end function log_function
142142
143143 ! Function for cos(x)
0 commit comments