|
| 1 | +!> Test program for the Trapezoidal Rule module |
| 2 | +!! |
| 3 | +!! Created by: Ramy-Badr-Ahmed (https://github.com/Ramy-Badr-Ahmed) |
| 4 | +!! in Pull Request: #32 |
| 5 | +!! https://github.com/TheAlgorithms/Fortran/pull/32 |
| 6 | +!! |
| 7 | +!! Please mention me (@Ramy-Badr-Ahmed) in any issue or pull request |
| 8 | +!! addressing bugs/corrections to this file. Thank you! |
| 9 | +!! |
| 10 | +!! This program provides test cases to validate the trapezoidal_rule module against known integral values. |
| 11 | + |
| 12 | + |
| 13 | +program test_trapezoidal_rule |
| 14 | + use trapezoidal_rule |
| 15 | + implicit none |
| 16 | + |
| 17 | + real(dp) :: lower_bound, upper_bound, integral_result, expected |
| 18 | + real(dp), parameter :: pi = 4.d0*DATAN(1.d0) ! Define Pi. Ensures maximum precision available on any architecture |
| 19 | + |
| 20 | + integer :: panels_number |
| 21 | + |
| 22 | + ! Test 1: ∫ x^2 dx from 0 to 1 (Exact result = 1/3 ≈ 0.3333) |
| 23 | + lower_bound = 0.0_dp |
| 24 | + upper_bound = 1.0_dp |
| 25 | + panels_number = 1000000 |
| 26 | + expected = 1.0_dp / 3.0_dp |
| 27 | + call trapezoid(integral_result, lower_bound, upper_bound, panels_number, f_x_squared) |
| 28 | + call assert_test(integral_result, expected, "Test 1: ∫ x^2 dx from 0 to 1") |
| 29 | + |
| 30 | + ! Test 2: ∫ x^2 dx from 0 to 2 (Exact result = 8/3 ≈ 2.6667) |
| 31 | + lower_bound = 0.0_dp |
| 32 | + upper_bound = 2.0_dp |
| 33 | + panels_number = 1000000 |
| 34 | + expected = 8.0_dp / 3.0_dp |
| 35 | + call trapezoid(integral_result, lower_bound, upper_bound, panels_number, f_x_squared) |
| 36 | + call assert_test(integral_result, expected, "Test 2: ∫ x^2 dx from 0 to 2") |
| 37 | + |
| 38 | + ! Test 3: ∫ sin(x) dx from 0 to π (Exact result = 2) |
| 39 | + lower_bound = 0.0_dp |
| 40 | + upper_bound = pi |
| 41 | + panels_number = 1000000 |
| 42 | + expected = 2.0_dp |
| 43 | + call trapezoid(integral_result, lower_bound, upper_bound, panels_number, sin_function) |
| 44 | + call assert_test(integral_result, expected, "Test 3: ∫ sin(x) dx from 0 to π") |
| 45 | + |
| 46 | +contains |
| 47 | + |
| 48 | + ! Function for x^2 |
| 49 | + real(dp) function f_x_squared(x) |
| 50 | + real(dp), intent(in) :: x |
| 51 | + f_x_squared = x**2 |
| 52 | + end function f_x_squared |
| 53 | + |
| 54 | + ! Function for sin(x) |
| 55 | + real(dp) function sin_function(x) |
| 56 | + real(dp), intent(in) :: x |
| 57 | + sin_function = sin(x) |
| 58 | + end function sin_function |
| 59 | + |
| 60 | + ! Assertion subroutine |
| 61 | + subroutine assert_test(result, expected, test_name) |
| 62 | + real(dp), intent(in) :: result, expected |
| 63 | + character(len=*), intent(in) :: test_name |
| 64 | + real(dp), parameter :: tol = 1.0e-5_dp |
| 65 | + |
| 66 | + if (abs(result - expected) < tol) then |
| 67 | + print *, test_name, " PASSED" |
| 68 | + else |
| 69 | + print *, test_name, " FAILED" |
| 70 | + print *, " Expected: ", expected |
| 71 | + print *, " Got: ", result |
| 72 | + stop 1 |
| 73 | + end if |
| 74 | + end subroutine assert_test |
| 75 | + |
| 76 | +end program test_trapezoidal_rule |
0 commit comments