24
24
def unique_prime_factors (n : int ) -> set :
25
25
"""
26
26
Find unique prime factors of an integer.
27
- Tests include sorting because only the set really matters,
27
+ Tests include sorting because only the set matters,
28
28
not the order in which it is produced.
29
29
>>> sorted(set(unique_prime_factors(14)))
30
30
[2, 7]
@@ -58,7 +58,7 @@ def upf_len(num: int) -> int:
58
58
59
59
def equality (iterable : list ) -> bool :
60
60
"""
61
- Check equality of ALL elements in an iterable
61
+ Check the equality of ALL elements in an iterable
62
62
>>> equality([1, 2, 3, 4])
63
63
False
64
64
>>> equality([2, 2, 2, 2])
@@ -69,23 +69,23 @@ def equality(iterable: list) -> bool:
69
69
return len (set (iterable )) in (0 , 1 )
70
70
71
71
72
- def run (n : int ) -> list :
72
+ def run (n : int ) -> list [ int ] :
73
73
"""
74
74
Runs core process to find problem solution.
75
75
>>> run(3)
76
76
[644, 645, 646]
77
77
"""
78
78
79
79
# Incrementor variable for our group list comprehension.
80
- # This serves as the first number in each list of values
80
+ # This is the first number in each list of values
81
81
# to test.
82
82
base = 2
83
83
84
84
while True :
85
85
# Increment each value of a generated range
86
86
group = [base + i for i in range (n )]
87
87
88
- # Run elements through out unique_prime_factors function
88
+ # Run elements through the unique_prime_factors function
89
89
# Append our target number to the end.
90
90
checker = [upf_len (x ) for x in group ]
91
91
checker .append (n )
@@ -98,7 +98,7 @@ def run(n: int) -> list:
98
98
base += 1
99
99
100
100
101
- def solution (n : int = 4 ) -> int :
101
+ def solution (n : int = 4 ) -> int | None :
102
102
"""Return the first value of the first four consecutive integers to have four
103
103
distinct prime factors each.
104
104
>>> solution()
0 commit comments