|
| 1 | +/// Returns the parameters of the line after performing simple linear regression on the input data. |
| 2 | +pub fn linear_regression(data_points: Vec<(f64, f64)>) -> Option<(f64, f64)> { |
| 3 | + if data_points.is_empty() { |
| 4 | + return None; |
| 5 | + } |
| 6 | + |
| 7 | + let count = data_points.len() as f64; |
| 8 | + let mean_x = data_points.iter().fold(0.0, |sum, y| sum + y.0) / count; |
| 9 | + let mean_y = data_points.iter().fold(0.0, |sum, y| sum + y.1) / count; |
| 10 | + |
| 11 | + let mut covariance = 0.0; |
| 12 | + let mut std_dev_sqr_x = 0.0; |
| 13 | + let mut std_dev_sqr_y = 0.0; |
| 14 | + |
| 15 | + for data_point in data_points { |
| 16 | + covariance += (data_point.0 - mean_x) * (data_point.1 - mean_y); |
| 17 | + std_dev_sqr_x += (data_point.0 - mean_x).powi(2); |
| 18 | + std_dev_sqr_y += (data_point.1 - mean_y).powi(2); |
| 19 | + } |
| 20 | + |
| 21 | + let std_dev_x = std_dev_sqr_x.sqrt(); |
| 22 | + let std_dev_y = std_dev_sqr_y.sqrt(); |
| 23 | + let std_dev_prod = std_dev_x * std_dev_y; |
| 24 | + |
| 25 | + let pcc = covariance / std_dev_prod; //Pearson's correlation constant |
| 26 | + let b = pcc * (std_dev_y / std_dev_x); //Slope of the line |
| 27 | + let a = mean_y - b * mean_x; //Y-Intercept of the line |
| 28 | + |
| 29 | + Some((a, b)) |
| 30 | +} |
| 31 | + |
| 32 | +#[cfg(test)] |
| 33 | +mod test { |
| 34 | + use super::*; |
| 35 | + |
| 36 | + #[test] |
| 37 | + fn test_linear_regression() { |
| 38 | + assert_eq!( |
| 39 | + linear_regression(vec![(0.0, 0.0), (1.0, 1.0), (2.0, 2.0)]), |
| 40 | + Some((2.220446049250313e-16, 0.9999999999999998)) |
| 41 | + ); |
| 42 | + } |
| 43 | + |
| 44 | + #[test] |
| 45 | + fn test_empty_list_linear_regression() { |
| 46 | + assert_eq!(linear_regression(vec![]), None); |
| 47 | + } |
| 48 | +} |
0 commit comments