|
| 1 | +use super::optimization::gradient_descent; |
| 2 | +use std::f64::consts::E; |
| 3 | + |
| 4 | +/// Returns the wieghts after performing Logistic regression on the input data points. |
| 5 | +pub fn logistic_regression( |
| 6 | + data_points: Vec<(Vec<f64>, f64)>, |
| 7 | + iterations: usize, |
| 8 | + learning_rate: f64, |
| 9 | +) -> Option<Vec<f64>> { |
| 10 | + if data_points.is_empty() { |
| 11 | + return None; |
| 12 | + } |
| 13 | + |
| 14 | + let num_features = data_points[0].0.len() + 1; |
| 15 | + let mut params = vec![0.0; num_features]; |
| 16 | + |
| 17 | + let derivative_fn = |params: &[f64]| derivative(params, &data_points); |
| 18 | + |
| 19 | + gradient_descent(derivative_fn, &mut params, learning_rate, iterations as i32); |
| 20 | + |
| 21 | + Some(params) |
| 22 | +} |
| 23 | + |
| 24 | +fn derivative(params: &[f64], data_points: &[(Vec<f64>, f64)]) -> Vec<f64> { |
| 25 | + let num_features = params.len(); |
| 26 | + let mut gradients = vec![0.0; num_features]; |
| 27 | + |
| 28 | + for (features, y_i) in data_points { |
| 29 | + let z = params[0] |
| 30 | + + params[1..] |
| 31 | + .iter() |
| 32 | + .zip(features) |
| 33 | + .map(|(p, x)| p * x) |
| 34 | + .sum::<f64>(); |
| 35 | + let prediction = 1.0 / (1.0 + E.powf(-z)); |
| 36 | + |
| 37 | + gradients[0] += prediction - y_i; |
| 38 | + for (i, x_i) in features.iter().enumerate() { |
| 39 | + gradients[i + 1] += (prediction - y_i) * x_i; |
| 40 | + } |
| 41 | + } |
| 42 | + |
| 43 | + gradients |
| 44 | +} |
| 45 | + |
| 46 | +#[cfg(test)] |
| 47 | +mod test { |
| 48 | + use super::*; |
| 49 | + |
| 50 | + #[test] |
| 51 | + fn test_logistic_regression_simple() { |
| 52 | + let data = vec![ |
| 53 | + (vec![0.0], 0.0), |
| 54 | + (vec![1.0], 0.0), |
| 55 | + (vec![2.0], 0.0), |
| 56 | + (vec![3.0], 1.0), |
| 57 | + (vec![4.0], 1.0), |
| 58 | + (vec![5.0], 1.0), |
| 59 | + ]; |
| 60 | + |
| 61 | + let result = logistic_regression(data, 10000, 0.05); |
| 62 | + assert!(result.is_some()); |
| 63 | + |
| 64 | + let params = result.unwrap(); |
| 65 | + assert!((params[0] + 17.65).abs() < 1.0); |
| 66 | + assert!((params[1] - 7.13).abs() < 1.0); |
| 67 | + } |
| 68 | + |
| 69 | + #[test] |
| 70 | + fn test_logistic_regression_extreme_data() { |
| 71 | + let data = vec![ |
| 72 | + (vec![-100.0], 0.0), |
| 73 | + (vec![-10.0], 0.0), |
| 74 | + (vec![0.0], 0.0), |
| 75 | + (vec![10.0], 1.0), |
| 76 | + (vec![100.0], 1.0), |
| 77 | + ]; |
| 78 | + |
| 79 | + let result = logistic_regression(data, 10000, 0.05); |
| 80 | + assert!(result.is_some()); |
| 81 | + |
| 82 | + let params = result.unwrap(); |
| 83 | + assert!((params[0] + 6.20).abs() < 1.0); |
| 84 | + assert!((params[1] - 5.5).abs() < 1.0); |
| 85 | + } |
| 86 | + |
| 87 | + #[test] |
| 88 | + fn test_logistic_regression_no_data() { |
| 89 | + let result = logistic_regression(vec![], 5000, 0.1); |
| 90 | + assert_eq!(result, None); |
| 91 | + } |
| 92 | +} |
0 commit comments