-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmaxSumOfThreeNonOverlappingSubarrays.ts
54 lines (48 loc) · 1.81 KB
/
maxSumOfThreeNonOverlappingSubarrays.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
function maxSumOfThreeSubarrays(nums: number[], k: number): number[] {
const n = nums.length;
const sum: number[] = new Array(n + 1).fill(0); // Prefix sums
const left: number[] = new Array(n).fill(0); // Best starting index for left subarray
const right: number[] = new Array(n).fill(n - k); // Best starting index for right subarray
const result: number[] = new Array(3).fill(0); // Result to store the indices
// Step 1: Compute prefix sums
for (let i = 0; i < n; i++) {
sum[i + 1] = sum[i] + nums[i];
}
// Step 2: Compute the left array (best subarray starting index for the left part)
let maxSum = sum[k] - sum[0];
for (let i = k; i < n; i++) {
if (sum[i + 1] - sum[i + 1 - k] > maxSum) {
maxSum = sum[i + 1] - sum[i + 1 - k];
left[i] = i + 1 - k;
} else {
left[i] = left[i - 1];
}
}
// Step 3: Compute the right array (best subarray starting index for the right part)
maxSum = sum[n] - sum[n - k];
for (let i = n - k - 1; i >= 0; i--) {
if (sum[i + k] - sum[i] >= maxSum) {
maxSum = sum[i + k] - sum[i];
right[i] = i;
} else {
right[i] = right[i + 1];
}
}
// Step 4: Find the best combination of left, middle, and right subarrays
maxSum = 0;
for (let i = k; i <= n - 2 * k; i++) {
const l = left[i - 1]; // Best starting index for the left subarray
const r = right[i + k]; // Best starting index for the right subarray
const total =
(sum[l + k] - sum[l]) +
(sum[i + k] - sum[i]) +
(sum[r + k] - sum[r]);
if (total > maxSum) {
maxSum = total;
result[0] = l;
result[1] = i;
result[2] = r;
}
}
return result;
};