-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhandler.py
90 lines (73 loc) · 2.72 KB
/
handler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import logging
from abc import ABC
import torch
from tokenizers import Regex, normalizers
from tokenizers.normalizers import NFKD, Lowercase, Replace, Strip, StripAccents
from transformers import AutoModel, AutoTokenizer, __version__
from ts.torch_handler.text_handler import BaseHandler
logger = logging.getLogger(__name__)
logger.info("Transformers version %s", __version__)
def init_normalizer():
return normalizers.Sequence(
[
Lowercase(),
NFKD(),
StripAccents(),
Strip(),
]
)
class TransformersHandler(BaseHandler, ABC):
tokenizer_kwargs = {"truncation": True, "padding": True}
def __init__(self):
super().__init__()
self.initialized = False
self.tokenizer = None
self.normalizer = init_normalizer()
def initialize(self, context):
properties = context.system_properties
self.map_location = (
"cuda"
if torch.cuda.is_available() and properties.get("gpu_id") is not None
else "cpu"
)
self.device = torch.device(
self.map_location + ":" + str(properties.get("gpu_id"))
if torch.cuda.is_available() and properties.get("gpu_id") is not None
else self.map_location
)
self.manifest = context.manifest
model_dir = properties.get("model_dir")
self.model = AutoModel.from_pretrained(model_dir)
if self.model is not None:
logger.info("Successfully loaded model")
else:
raise RuntimeError("Missing model")
self.model.to(self.device)
self.model.eval()
# Load tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(model_dir)
if self.tokenizer is not None:
logger.info("Successfully loaded tokenizer")
else:
raise RuntimeError("Missing tokenizer")
self.initialized = True
def preprocess(self, data):
if all(isinstance(k, dict) for k in data):
# Assume when passing instances, it is length 1
data = [k.get("body")["instances"][0] for k in data]
# Normalize
normalized = [self.normalizer.normalize_str(k) for k in data]
# Tokenize
tokenized = self.tokenizer(
normalized, return_tensors="pt", **self.tokenizer_kwargs
)
return tokenized
def inference(self, data, *args, **kwargs):
with torch.no_grad():
marshalled_data = data.to(self.device)
results = self.model(**marshalled_data, **kwargs)
return results
def postprocess(self, data):
# Compute embedding for [CLS] token
result = data["last_hidden_state"][:, 0]
return result.tolist()