-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclass20180117_IT2N2_linear.m
68 lines (55 loc) · 1.3 KB
/
class20180117_IT2N2_linear.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
%Let's draw a line in a plane such that
%it is not easily a function type of a relation
%for any change of the variables.
%Often one can, however, present the coordinates by
%a suitable choice of a common parameter t, e.g. directly {x(t),y(t)}.
%Here, the shape of the desired line ("a loop") suggested
%polynomial type functions x(t) and y(t):
%x(t)=ax+bx*t+cx*t^2+dx*t^3 (four model parameters for x) and
%y(t)=ay+by*t+cy*t^2 (three model parameters for y).
%Thus four values for x and three values for y may be required.
clear;%clear for posssible existing variables in the workspace
clc;
%choosing some (reference) values for parameter t
t0=0;%x,y
t1=0.2;%dummy
t2=0.4;%x
t3=0.5;%y
t4=0.6;%x
t5=0.8;%dummy
t6=1;%x,y
T=[t0 t1 t2 t3 t4 t5 t6];
x0=0;
x1=2;
x2=4;
x3=6;
x4=8;
y0=0;
y1=6;
y2=12;
y3=18;
Ax=[1 t0 t0^2 t0^3;...
1 t2 t2^2 t2^3;...
1 t4 t4^2 t4^3;...
1 t6 t6^2 t6^3 ...
];
ux=[x0 x3 x1 x4]';
px=Ax\ux;
Ay=[1 t0 t0^2;...
1 t3 t3^2;...
1 t6 t6^2 ...
];
uy=[y0 y3 y0]';
py=Ay\uy;
N=10^4;
t=linspace(0,1,N);
x=px(1)+px(2)*t+px(3)*t.^2+px(4)*t.^3;
y=py(1)+py(2)*t+py(3)*t.^2;
X=px(1)+px(2)*T+px(3)*T.^2+px(4)*T.^3;
Y=py(1)+py(2)*T+py(3)*T.^2;
figure(1);
clf;
hold on;
plot(x,y,'b.-');
plot(X,Y,'ro');
grid on;