-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathxml_loader.py
85 lines (69 loc) · 2.44 KB
/
xml_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from xml.etree import ElementTree
from collections import defaultdict
class Stage:
def __init__(self, threshold):
self.threshold = threshold
self.features = []
class HaarFeature:
def __init__(self, palpha, nalpha, top_left, width, height, threshold, rects):
self.palpha = palpha
self.nalpha = nalpha
self.top_left = top_left
self.width = width
self.height = height
self.threshold = threshold
self.rects = rects
class Rect:
def __init__(self, top_left, width, height, weight):
self.top_left = top_left
self.width = width
self.height = height
self.weight = weight
def etree_to_dict(t):
d = {t.tag: {} if t.attrib else None}
children = list(t)
if children:
dd = defaultdict(list)
for dc in map(etree_to_dict, children):
for k, v in dc.items():
dd[k].append(v)
d = {t.tag: {k:v[0] if len(v) == 1 else v for k, v in dd.items()}}
if t.attrib:
d[t.tag].update(('@' + k, v) for k, v in t.attrib.items())
if t.text:
text = t.text.strip()
if children or t.attrib:
if text:
d[t.tag]['#text'] = text
else:
d[t.tag] = text
return d
def parse_rect(str):
vals = tuple((int(float(x)) for x in str.split(' ')))
tlx, tly, w, h, s = vals
return Rect((tlx, tly), w, h, s)
def parse_feature(xc, rects):
threshold = [float(x) for x in xc['internalNodes'].split(' ')][-1]
palpha, nalpha = tuple((float(x) for x in xc['leafValues'].split(' ')))
width = max(rects, key=lambda x: x.width).width
height = max(rects, key=lambda x: x.height).height
top_left = min(rects, key=lambda x: sum(x.top_left)).top_left
return HaarFeature(palpha, nalpha, top_left, width, height, threshold, rects)
def parse_xml(filename):
c = etree_to_dict(ElementTree.parse(filename).getroot())['opencv_storage']['cascade']
s = c['stages']['_']
f = c['features']['_']
del c
stages = []
l = 0
for i in range(len(s)):
xs = s[i]
stage = Stage(float(xs['stageThreshold']))
for j in range(len(xs['weakClassifiers']['_'])):
xc = xs['weakClassifiers']['_'][j]
rects = [parse_rect(xr) for xr in f[l]['rects']['_']]
l += 1
feature = parse_feature(xc, rects)
stage.features.append(feature)
stages.append(stage)
return stages