forked from openai/openai-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtranscription_sessions.py
277 lines (224 loc) · 13.4 KB
/
transcription_sessions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from __future__ import annotations
from typing import List
from typing_extensions import Literal
import httpx
from .... import _legacy_response
from ...._types import NOT_GIVEN, Body, Query, Headers, NotGiven
from ...._utils import (
maybe_transform,
async_maybe_transform,
)
from ...._compat import cached_property
from ...._resource import SyncAPIResource, AsyncAPIResource
from ...._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper
from ...._base_client import make_request_options
from ....types.beta.realtime import transcription_session_create_params
from ....types.beta.realtime.transcription_session import TranscriptionSession
__all__ = ["TranscriptionSessions", "AsyncTranscriptionSessions"]
class TranscriptionSessions(SyncAPIResource):
@cached_property
def with_raw_response(self) -> TranscriptionSessionsWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return TranscriptionSessionsWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> TranscriptionSessionsWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return TranscriptionSessionsWithStreamingResponse(self)
def create(
self,
*,
include: List[str] | NotGiven = NOT_GIVEN,
input_audio_format: Literal["pcm16", "g711_ulaw", "g711_alaw"] | NotGiven = NOT_GIVEN,
input_audio_noise_reduction: transcription_session_create_params.InputAudioNoiseReduction
| NotGiven = NOT_GIVEN,
input_audio_transcription: transcription_session_create_params.InputAudioTranscription | NotGiven = NOT_GIVEN,
modalities: List[Literal["text", "audio"]] | NotGiven = NOT_GIVEN,
turn_detection: transcription_session_create_params.TurnDetection | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> TranscriptionSession:
"""
Create an ephemeral API token for use in client-side applications with the
Realtime API specifically for realtime transcriptions. Can be configured with
the same session parameters as the `transcription_session.update` client event.
It responds with a session object, plus a `client_secret` key which contains a
usable ephemeral API token that can be used to authenticate browser clients for
the Realtime API.
Args:
include:
The set of items to include in the transcription. Current available items are:
- `item.input_audio_transcription.logprobs`
input_audio_format: The format of input audio. Options are `pcm16`, `g711_ulaw`, or `g711_alaw`. For
`pcm16`, input audio must be 16-bit PCM at a 24kHz sample rate, single channel
(mono), and little-endian byte order.
input_audio_noise_reduction: Configuration for input audio noise reduction. This can be set to `null` to turn
off. Noise reduction filters audio added to the input audio buffer before it is
sent to VAD and the model. Filtering the audio can improve VAD and turn
detection accuracy (reducing false positives) and model performance by improving
perception of the input audio.
input_audio_transcription: Configuration for input audio transcription. The client can optionally set the
language and prompt for transcription, these offer additional guidance to the
transcription service.
modalities: The set of modalities the model can respond with. To disable audio, set this to
["text"].
turn_detection: Configuration for turn detection, ether Server VAD or Semantic VAD. This can be
set to `null` to turn off, in which case the client must manually trigger model
response. Server VAD means that the model will detect the start and end of
speech based on audio volume and respond at the end of user speech. Semantic VAD
is more advanced and uses a turn detection model (in conjuction with VAD) to
semantically estimate whether the user has finished speaking, then dynamically
sets a timeout based on this probability. For example, if user audio trails off
with "uhhm", the model will score a low probability of turn end and wait longer
for the user to continue speaking. This can be useful for more natural
conversations, but may have a higher latency.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return self._post(
"/realtime/transcription_sessions",
body=maybe_transform(
{
"include": include,
"input_audio_format": input_audio_format,
"input_audio_noise_reduction": input_audio_noise_reduction,
"input_audio_transcription": input_audio_transcription,
"modalities": modalities,
"turn_detection": turn_detection,
},
transcription_session_create_params.TranscriptionSessionCreateParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=TranscriptionSession,
)
class AsyncTranscriptionSessions(AsyncAPIResource):
@cached_property
def with_raw_response(self) -> AsyncTranscriptionSessionsWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return AsyncTranscriptionSessionsWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> AsyncTranscriptionSessionsWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return AsyncTranscriptionSessionsWithStreamingResponse(self)
async def create(
self,
*,
include: List[str] | NotGiven = NOT_GIVEN,
input_audio_format: Literal["pcm16", "g711_ulaw", "g711_alaw"] | NotGiven = NOT_GIVEN,
input_audio_noise_reduction: transcription_session_create_params.InputAudioNoiseReduction
| NotGiven = NOT_GIVEN,
input_audio_transcription: transcription_session_create_params.InputAudioTranscription | NotGiven = NOT_GIVEN,
modalities: List[Literal["text", "audio"]] | NotGiven = NOT_GIVEN,
turn_detection: transcription_session_create_params.TurnDetection | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> TranscriptionSession:
"""
Create an ephemeral API token for use in client-side applications with the
Realtime API specifically for realtime transcriptions. Can be configured with
the same session parameters as the `transcription_session.update` client event.
It responds with a session object, plus a `client_secret` key which contains a
usable ephemeral API token that can be used to authenticate browser clients for
the Realtime API.
Args:
include:
The set of items to include in the transcription. Current available items are:
- `item.input_audio_transcription.logprobs`
input_audio_format: The format of input audio. Options are `pcm16`, `g711_ulaw`, or `g711_alaw`. For
`pcm16`, input audio must be 16-bit PCM at a 24kHz sample rate, single channel
(mono), and little-endian byte order.
input_audio_noise_reduction: Configuration for input audio noise reduction. This can be set to `null` to turn
off. Noise reduction filters audio added to the input audio buffer before it is
sent to VAD and the model. Filtering the audio can improve VAD and turn
detection accuracy (reducing false positives) and model performance by improving
perception of the input audio.
input_audio_transcription: Configuration for input audio transcription. The client can optionally set the
language and prompt for transcription, these offer additional guidance to the
transcription service.
modalities: The set of modalities the model can respond with. To disable audio, set this to
["text"].
turn_detection: Configuration for turn detection, ether Server VAD or Semantic VAD. This can be
set to `null` to turn off, in which case the client must manually trigger model
response. Server VAD means that the model will detect the start and end of
speech based on audio volume and respond at the end of user speech. Semantic VAD
is more advanced and uses a turn detection model (in conjuction with VAD) to
semantically estimate whether the user has finished speaking, then dynamically
sets a timeout based on this probability. For example, if user audio trails off
with "uhhm", the model will score a low probability of turn end and wait longer
for the user to continue speaking. This can be useful for more natural
conversations, but may have a higher latency.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})}
return await self._post(
"/realtime/transcription_sessions",
body=await async_maybe_transform(
{
"include": include,
"input_audio_format": input_audio_format,
"input_audio_noise_reduction": input_audio_noise_reduction,
"input_audio_transcription": input_audio_transcription,
"modalities": modalities,
"turn_detection": turn_detection,
},
transcription_session_create_params.TranscriptionSessionCreateParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=TranscriptionSession,
)
class TranscriptionSessionsWithRawResponse:
def __init__(self, transcription_sessions: TranscriptionSessions) -> None:
self._transcription_sessions = transcription_sessions
self.create = _legacy_response.to_raw_response_wrapper(
transcription_sessions.create,
)
class AsyncTranscriptionSessionsWithRawResponse:
def __init__(self, transcription_sessions: AsyncTranscriptionSessions) -> None:
self._transcription_sessions = transcription_sessions
self.create = _legacy_response.async_to_raw_response_wrapper(
transcription_sessions.create,
)
class TranscriptionSessionsWithStreamingResponse:
def __init__(self, transcription_sessions: TranscriptionSessions) -> None:
self._transcription_sessions = transcription_sessions
self.create = to_streamed_response_wrapper(
transcription_sessions.create,
)
class AsyncTranscriptionSessionsWithStreamingResponse:
def __init__(self, transcription_sessions: AsyncTranscriptionSessions) -> None:
self._transcription_sessions = transcription_sessions
self.create = async_to_streamed_response_wrapper(
transcription_sessions.create,
)